Online biometric authentication using hand vein patterns

Amioy Kumar, M. Hanmandlu, H. Gupta
{"title":"Online biometric authentication using hand vein patterns","authors":"Amioy Kumar, M. Hanmandlu, H. Gupta","doi":"10.1109/CISDA.2009.5356554","DOIUrl":null,"url":null,"abstract":"Online authentication is one of the basic requirements for any biometric based authentication system used in civil and commercial applications. This paper presents a new approach for online biometric authentication using hand vein patterns. In contrast to the existing approaches, our online authentication system utilizes infrared thermal images of hand vein patterns for authentication purposes. A robust peg free camera set up is employed for infrared thermal imaging. A region of interest (ROI) is extracted from the vein patterns to convolve with Gabor filter for improving the visibility of vein pattern. The outcome of this convolution is the real and imaginary parts of which only the real part is regarded as a texture. Gabor Wavelets at different orientations are convolved with the real part after partitioning it into non-overlapping windows to extract texture. The mean of the convolution on each window is taken as a feature. The experimental results on 100 users conform to the false acceptance error rate (FAR) of 0.1% for the genuine acceptance rate (GAR) of 98.5%.","PeriodicalId":6407,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","volume":"39 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISDA.2009.5356554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Online authentication is one of the basic requirements for any biometric based authentication system used in civil and commercial applications. This paper presents a new approach for online biometric authentication using hand vein patterns. In contrast to the existing approaches, our online authentication system utilizes infrared thermal images of hand vein patterns for authentication purposes. A robust peg free camera set up is employed for infrared thermal imaging. A region of interest (ROI) is extracted from the vein patterns to convolve with Gabor filter for improving the visibility of vein pattern. The outcome of this convolution is the real and imaginary parts of which only the real part is regarded as a texture. Gabor Wavelets at different orientations are convolved with the real part after partitioning it into non-overlapping windows to extract texture. The mean of the convolution on each window is taken as a feature. The experimental results on 100 users conform to the false acceptance error rate (FAR) of 0.1% for the genuine acceptance rate (GAR) of 98.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用手部静脉模式的在线生物识别认证
在线认证是民用和商业应用中基于生物识别的认证系统的基本要求之一。本文提出了一种利用手部静脉图案进行在线生物识别认证的新方法。与现有方法相比,我们的在线认证系统利用手静脉模式的红外热图像进行认证。红外热成像采用了一种坚固的无钉摄像机装置。通过提取感兴趣区域(ROI)与Gabor滤波器进行卷积,提高了静脉模式的可见性。这个卷积的结果是实部和虚部,其中只有实部被视为纹理。将不同方向的Gabor小波分割成不重叠的窗口后与实部进行卷积提取纹理。将每个窗口上的卷积均值作为特征。100名用户的实验结果符合真实接受率(GAR)为98.5%,虚假接受错误率(FAR)为0.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evolving spiking neural networks: A novel growth algorithm corrects the teacher Emitter geolocation using low-accuracy direction-finding sensors Secure two and multi-party association rule mining Passive multitarget tracking using transmitters of opportunity Bias phenomenon and analysis of a nonlinear transformation in a mobile passive sensor network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1