Tiered State Expansion in Optimization Crosswords

A. Botea, V. Bulitko
{"title":"Tiered State Expansion in Optimization Crosswords","authors":"A. Botea, V. Bulitko","doi":"10.1609/aiide.v18i1.21950","DOIUrl":null,"url":null,"abstract":"Crosswords puzzles continue to be a popular form of entertainment. In Artificial Intelligence (AI), crosswords can be represented as a constraint problem, and attacked with a combinatorial search algorithm. In combinatorial search, the branching factor can play a crucial role on the search space size and thus on the search effort. We introduce tiered state expansion, a completeness-preserving technique to reduce the branching factor. In problems where the successors of a state correspond to the values in the domain of a state variable selected for instantiation, the domain is partitioned into two subsets called tiers. The instantiation of the two tiers is performed at different times, with tier 1 first and tier 2 in a subsequent state. Before a tier-2 instantiation occurs, its set of applicable values can shrink substantially due to constraint propagation, with a corresponding reduction of the branching factor. We apply tiered state expansion to a constraint optimization problem modeled on the Romanian Crosswords Competition, empirically demonstrating a substantial improvement. Tiered state expansion allows finding a full solution, with an average CPU time of up to 1.2 minutes, to many puzzles that would otherwise time out after 4 hours.","PeriodicalId":92576,"journal":{"name":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","volume":"20 1","pages":"79-86"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. AAAI Artificial Intelligence and Interactive Digital Entertainment Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v18i1.21950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Crosswords puzzles continue to be a popular form of entertainment. In Artificial Intelligence (AI), crosswords can be represented as a constraint problem, and attacked with a combinatorial search algorithm. In combinatorial search, the branching factor can play a crucial role on the search space size and thus on the search effort. We introduce tiered state expansion, a completeness-preserving technique to reduce the branching factor. In problems where the successors of a state correspond to the values in the domain of a state variable selected for instantiation, the domain is partitioned into two subsets called tiers. The instantiation of the two tiers is performed at different times, with tier 1 first and tier 2 in a subsequent state. Before a tier-2 instantiation occurs, its set of applicable values can shrink substantially due to constraint propagation, with a corresponding reduction of the branching factor. We apply tiered state expansion to a constraint optimization problem modeled on the Romanian Crosswords Competition, empirically demonstrating a substantial improvement. Tiered state expansion allows finding a full solution, with an average CPU time of up to 1.2 minutes, to many puzzles that would otherwise time out after 4 hours.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化填字游戏中的分层状态展开
填字游戏仍然是一种流行的娱乐形式。在人工智能(AI)中,填字游戏可以表示为约束问题,并使用组合搜索算法进行攻击。在组合搜索中,分支因子对搜索空间的大小起着至关重要的作用,从而对搜索效果产生影响。我们引入了一种保持完备性的分层状态展开技术来减少分支因子。在一个状态的后继者对应于选择实例化的状态变量域中的值的问题中,该域被划分为两个子集,称为层。两个层的实例化在不同的时间执行,第1层首先执行,第2层处于随后的状态。在第2层实例化发生之前,由于约束传播,其适用值集可能会大幅缩小,分支因子也相应减少。我们将分层状态扩展应用于罗马尼亚填字比赛模型的约束优化问题,实证证明了一个实质性的改进。分层状态扩展允许玩家在平均CPU时间高达1.2分钟的情况下找到完整的解决方案,否则许多谜题将在4小时后超时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeadSpace: Incorporating Action Failure and Character Beliefs into Narrative Planning A Hybrid Approach to Co-creative Story Authoring Using Grammars and Language Models Reasoning with Ontologies for Non-player Character's Decision-Making in Games On the Challenges of Generating Pixel Art Character Sprites Using GANs Loose Ends: A Mixed-Initiative Creative Interface for Playful Storytelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1