Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes

Huan Qin , Haoyu Wu , Shu-Mao Zeng , Fan Yi , Si-Yong Qin , Yue Sun , Li Ding , Haihui Wang
{"title":"Harvesting osmotic energy from proton gradients enabled by two-dimensional Ti3C2Tx MXene membranes","authors":"Huan Qin ,&nbsp;Haoyu Wu ,&nbsp;Shu-Mao Zeng ,&nbsp;Fan Yi ,&nbsp;Si-Yong Qin ,&nbsp;Yue Sun ,&nbsp;Li Ding ,&nbsp;Haihui Wang","doi":"10.1016/j.advmem.2022.100046","DOIUrl":null,"url":null,"abstract":"<div><p>Osmotic energy is a kind of blue energy that has recently been identified as an additional source of clean energy. Using a membrane-based reverse electrodialysis (RED) process, this blue energy can be obtained from acidic industrial wastewater with different proton concentration gradients. However, this process demands high-performance membrane that can withstand harsh environments, possessing the advantages of wide pH tolerance, high-temperature resistance and chemical stability, developing such membranes remain a challenge. Herein, we report a two-dimensional (2D) lamellar Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene membrane-based RED device for osmotic energy capturing from proton gradients. Such a membrane exhibits a typical surface-charge-governed ion transport feature. Moreover, the MXene membrane-based energy harvesting device holds the merits of outstanding pH and temperature resistance. It exhibits an output power density of 6.5 ​W/m<sup>2</sup> and also demonstrates stability over 200 ​h at pH ​= ​0, which is 30% higher than the commercialization benchmark (5 ​W/m<sup>2</sup>). The osmotic power density can be further enhanced to 11.1 ​W/m<sup>2</sup> at 330 ​K, demonstrating excellent thermal and chemical stability. This work can help better understand protons' transport behaviors in MXene membranes and open new avenues for applications in sustainable power conversion and wastewater treatment.</p></div>","PeriodicalId":100033,"journal":{"name":"Advanced Membranes","volume":"2 ","pages":"Article 100046"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772823422000227/pdfft?md5=ce621bf88eed202b009f9ffe185947ed&pid=1-s2.0-S2772823422000227-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Membranes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772823422000227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Osmotic energy is a kind of blue energy that has recently been identified as an additional source of clean energy. Using a membrane-based reverse electrodialysis (RED) process, this blue energy can be obtained from acidic industrial wastewater with different proton concentration gradients. However, this process demands high-performance membrane that can withstand harsh environments, possessing the advantages of wide pH tolerance, high-temperature resistance and chemical stability, developing such membranes remain a challenge. Herein, we report a two-dimensional (2D) lamellar Ti3C2Tx MXene membrane-based RED device for osmotic energy capturing from proton gradients. Such a membrane exhibits a typical surface-charge-governed ion transport feature. Moreover, the MXene membrane-based energy harvesting device holds the merits of outstanding pH and temperature resistance. It exhibits an output power density of 6.5 ​W/m2 and also demonstrates stability over 200 ​h at pH ​= ​0, which is 30% higher than the commercialization benchmark (5 ​W/m2). The osmotic power density can be further enhanced to 11.1 ​W/m2 at 330 ​K, demonstrating excellent thermal and chemical stability. This work can help better understand protons' transport behaviors in MXene membranes and open new avenues for applications in sustainable power conversion and wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二维Ti3C2Tx MXene膜从质子梯度中获取渗透能
渗透能是一种蓝色能源,最近被确定为一种额外的清洁能源。利用基于膜的反电渗析(RED)工艺,可以从具有不同质子浓度梯度的酸性工业废水中获得这种蓝色能量。然而,该工艺要求高性能膜能够承受恶劣环境,具有宽pH耐受性,耐高温性和化学稳定性等优点,开发这样的膜仍然是一个挑战。在此,我们报道了一个二维(2D)层状Ti3C2Tx MXene膜为基础的RED装置,用于从质子梯度中渗透捕获能量。这种膜表现出典型的表面电荷控制离子传输特征。此外,基于MXene膜的能量收集装置具有出色的耐pH和耐温性。它的输出功率密度为6.5 W/m2,并且在pH = 0时稳定性超过200小时,比商业化基准(5 W/m2)高出30%。在330 K下,渗透功率密度可进一步提高到11.1 W/m2,具有良好的热稳定性和化学稳定性。这项工作有助于更好地理解质子在MXene膜中的输运行为,并为可持续电力转换和废水处理的应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
0.00%
发文量
0
期刊最新文献
Progress in design of halloysite nanotubes-polymer nanocomposite membranes and their applications Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics Spray-assisted assembly of thin-film composite membranes in one process Erratum regarding Declaration of Competing Interest statements in previously published articles Metal-organic frameworks-based mixed matrix pervaporation membranes for recovery of organics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1