Singularity analysis and reconfiguration mode of the 3-CRS parallel manipulator

C. Bouzgarrou, A. Koessler, N. Bouton
{"title":"Singularity analysis and reconfiguration mode of the 3-CRS parallel manipulator","authors":"C. Bouzgarrou, A. Koessler, N. Bouton","doi":"10.1109/ICRA40945.2020.9197337","DOIUrl":null,"url":null,"abstract":"The 3-CRS manipulator is an original parallel mechanism having 6 degrees of freedom (DOFs) with only 3 limbs. This mechanism uses a motorized cylindrical joint per limb. This new paradigm of actuation opens research fields on new families of robots that should particularly interest the parallel robotics community. According to its dimensional synthesis, this mechanism can have remarkable kinematic properties such as a large orientation workspace or reconfiguration capabilities. In this paper, we introduce this mechanism and we study its singularities by using a geometric approach. This approach simplifies considerably singularity analysis problem by considering the relative geometric configurations of three planes defined by the distal links of the limbs. Thanks to that, a reconfiguration mode of the 3-CRS, that doubles its reachable workspace, is highlighted. This property is illustrated on a physical prototype of the robot.","PeriodicalId":6859,"journal":{"name":"2020 IEEE International Conference on Robotics and Automation (ICRA)","volume":"14 1","pages":"10384-10390"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA40945.2020.9197337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The 3-CRS manipulator is an original parallel mechanism having 6 degrees of freedom (DOFs) with only 3 limbs. This mechanism uses a motorized cylindrical joint per limb. This new paradigm of actuation opens research fields on new families of robots that should particularly interest the parallel robotics community. According to its dimensional synthesis, this mechanism can have remarkable kinematic properties such as a large orientation workspace or reconfiguration capabilities. In this paper, we introduce this mechanism and we study its singularities by using a geometric approach. This approach simplifies considerably singularity analysis problem by considering the relative geometric configurations of three planes defined by the distal links of the limbs. Thanks to that, a reconfiguration mode of the 3-CRS, that doubles its reachable workspace, is highlighted. This property is illustrated on a physical prototype of the robot.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3-CRS并联机构奇异性分析及重构模式
3- crs机械臂是一种具有6个自由度、只有3个分支的原始并联机构。该机构每个肢体使用一个电动圆柱关节。这种新的驱动模式为新的机器人家族开辟了研究领域,平行机器人社区应该特别感兴趣。根据其尺寸综合,该机构具有较大的姿态工作空间或重构能力等显著的运动学特性。本文引入了这一机制,并利用几何方法研究了其奇异性。该方法通过考虑由肢体远端连杆定义的三个平面的相对几何构型,大大简化了奇异性分析问题。因此,突出显示了3-CRS的重新配置模式,使其可到达的工作空间增加了一倍。这一特性在机器人的物理原型上得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstractions for computing all robotic sensors that suffice to solve a planning problem An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty Interval Search Genetic Algorithm Based on Trajectory to Solve Inverse Kinematics of Redundant Manipulators and Its Application Path-Following Model Predictive Control of Ballbots Identification and evaluation of a force model for multirotor UAVs*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1