{"title":"Using blocking approach to preserve privacy in classification rules by inserting dummy Transaction","authors":"Doryaneh Hossien Afshari, F. Z. Boroujeni","doi":"10.5899/2017/JSCA-00073","DOIUrl":null,"url":null,"abstract":"The increasing rate of data sharing among organizations could maximize the risk of leaking sensitive knowledge. Trying to solve this problem leads to increase the importance of privacy preserving within the process of data sharing. In this study is focused on privacy preserving in classification rules mining as a technique of data mining. We propose a blocking algorithm to hiding sensitive classification rules. In the solution, rules' hiding occurs as a result of editing a set of transactions which satisfy sensitive classification rules. The proposed approach tries to deceive and block adversaries by inserting some dummy transactions. Finally, the solution has been evaluated and compared with other available solutions. Results show that limiting the number of attributes existing in each sensitive rule will lead to a decrease in both the number of lost rules and the production rate of ghost rules.","PeriodicalId":38638,"journal":{"name":"International Journal of Advances in Soft Computing and its Applications","volume":"31 1","pages":"44-52"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Soft Computing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5899/2017/JSCA-00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 4
Abstract
The increasing rate of data sharing among organizations could maximize the risk of leaking sensitive knowledge. Trying to solve this problem leads to increase the importance of privacy preserving within the process of data sharing. In this study is focused on privacy preserving in classification rules mining as a technique of data mining. We propose a blocking algorithm to hiding sensitive classification rules. In the solution, rules' hiding occurs as a result of editing a set of transactions which satisfy sensitive classification rules. The proposed approach tries to deceive and block adversaries by inserting some dummy transactions. Finally, the solution has been evaluated and compared with other available solutions. Results show that limiting the number of attributes existing in each sensitive rule will lead to a decrease in both the number of lost rules and the production rate of ghost rules.
期刊介绍:
The aim of this journal is to provide a lively forum for the communication of original research papers and timely review articles on Advances in Soft Computing and Its Applications. IJASCA will publish only articles of the highest quality. Submissions will be evaluated on their originality and significance. IJASCA invites submissions in all areas of Soft Computing and Its Applications. The scope of the journal includes, but is not limited to: √ Soft Computing Fundamental and Optimization √ Soft Computing for Big Data Era √ GPU Computing for Machine Learning √ Soft Computing Modeling for Perception and Spiritual Intelligence √ Soft Computing and Agents Technology √ Soft Computing in Computer Graphics √ Soft Computing and Pattern Recognition √ Soft Computing in Biomimetic Pattern Recognition √ Data mining for Social Network Data √ Spatial Data Mining & Information Retrieval √ Intelligent Software Agent Systems and Architectures √ Advanced Soft Computing and Multi-Objective Evolutionary Computation √ Perception-Based Intelligent Decision Systems √ Spiritual-Based Intelligent Systems √ Soft Computing in Industry ApplicationsOther issues related to the Advances of Soft Computing in various applications.