Improved Time-Space Trade-offs for Computing Voronoi Diagrams

Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein
{"title":"Improved Time-Space Trade-offs for Computing Voronoi Diagrams","authors":"Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein","doi":"10.20382/jocg.v9i1a6","DOIUrl":null,"url":null,"abstract":"Let $P$ be a planar set of $n$ sites in general position. For $k\\in\\{1,\\dots,n-1\\}$, the Voronoi diagram of order $k$ for $P$ is obtained by subdividing the plane into cells such that points in the same cell have the same set of nearest $k$ neighbors in $P$. The (nearest site) Voronoi diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular cases of $k=1$ and $k=n-1$, respectively. For any given $K\\in\\{1,\\dots,n-1\\}$, the family of all higher-order Voronoi diagrams of order $k=1,\\dots,K$ for $P$ can be computed in total time $O(nK^2+ n\\log n)$ using $O(K^2(n-K))$ space [Aggarwal et al., DCG'89; Lee, TC'82]. Moreover, NVD and FVD for $P$ can be computed in $O(n\\log n)$ time using $O(n)$ space [Preparata, Shamos, Springer'85]. \nFor $s\\in\\{1,\\dots,n\\}$, an $s$-workspace algorithm has random access to a read-only array with the sites of $P$ in arbitrary order. Additionally, the algorithm may use $O(s)$ words, of $\\Theta(\\log n)$ bits each, for reading and writing intermediate data. The output can be written only once and cannot be accessed or modified afterwards. \nWe describe a deterministic $s$-workspace algorithm for computing NVD and FVD for $P$ that runs in $O((n^2/s)\\log s)$ time. Moreover, we generalize our $s$-workspace algorithm so that for any given $K\\in O(\\sqrt{s})$, we compute the family of all higher-order Voronoi diagrams of order $k=1,\\dots,K$ for $P$ in total expected time $O (\\frac{n^2 K^5}{s}(\\log s+K2^{O(\\log^* K)}))$ or in total deterministic time $O(\\frac{n^2 K^5}{s}(\\log s+K\\log K))$. Previously, for Voronoi diagrams, the only known $s$-workspace algorithm runs in expected time $O\\bigl((n^2/s)\\log s+n\\log s\\log^* s)$ [Korman et al., WADS'15] and only works for NVD (i.e., $k=1$). Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"13 1","pages":"191-212"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v9i1a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

Abstract

Let $P$ be a planar set of $n$ sites in general position. For $k\in\{1,\dots,n-1\}$, the Voronoi diagram of order $k$ for $P$ is obtained by subdividing the plane into cells such that points in the same cell have the same set of nearest $k$ neighbors in $P$. The (nearest site) Voronoi diagram (NVD) and the farthest site Voronoi diagram (FVD) are the particular cases of $k=1$ and $k=n-1$, respectively. For any given $K\in\{1,\dots,n-1\}$, the family of all higher-order Voronoi diagrams of order $k=1,\dots,K$ for $P$ can be computed in total time $O(nK^2+ n\log n)$ using $O(K^2(n-K))$ space [Aggarwal et al., DCG'89; Lee, TC'82]. Moreover, NVD and FVD for $P$ can be computed in $O(n\log n)$ time using $O(n)$ space [Preparata, Shamos, Springer'85]. For $s\in\{1,\dots,n\}$, an $s$-workspace algorithm has random access to a read-only array with the sites of $P$ in arbitrary order. Additionally, the algorithm may use $O(s)$ words, of $\Theta(\log n)$ bits each, for reading and writing intermediate data. The output can be written only once and cannot be accessed or modified afterwards. We describe a deterministic $s$-workspace algorithm for computing NVD and FVD for $P$ that runs in $O((n^2/s)\log s)$ time. Moreover, we generalize our $s$-workspace algorithm so that for any given $K\in O(\sqrt{s})$, we compute the family of all higher-order Voronoi diagrams of order $k=1,\dots,K$ for $P$ in total expected time $O (\frac{n^2 K^5}{s}(\log s+K2^{O(\log^* K)}))$ or in total deterministic time $O(\frac{n^2 K^5}{s}(\log s+K\log K))$. Previously, for Voronoi diagrams, the only known $s$-workspace algorithm runs in expected time $O\bigl((n^2/s)\log s+n\log s\log^* s)$ [Korman et al., WADS'15] and only works for NVD (i.e., $k=1$). Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的计算Voronoi图的时空权衡
让 $P$ 是的平面集合 $n$ 网站的一般位置。因为 $k\in\{1,\dots,n-1\}$,沃罗诺伊秩序图 $k$ 为了 $P$ 是通过将平面细分为单元,使同一单元中的点具有相同的最近的 $k$ 邻居们 $P$. (最近点)Voronoi图(NVD)和最远点Voronoi图(FVD)是特殊情况 $k=1$ 和 $k=n-1$,分别。对于任何给定的 $K\in\{1,\dots,n-1\}$,所有阶高阶Voronoi图的族 $k=1,\dots,K$ 为了 $P$ 可以计算总时间吗 $O(nK^2+ n\log n)$ 使用 $O(K^2(n-K))$ 空间[Aggarwal et al., DCG'89];[j]。此外,NVD和FVD为 $P$ 可以用 $O(n\log n)$ 利用时间 $O(n)$ 空间[Preparata, Shamos, Springer'85]。因为 $s\in\{1,\dots,n\}$,还有 $s$-workspace算法随机访问具有站点的只读数组 $P$ 以任意的顺序。另外,算法还可以使用 $O(s)$ 单词,of $\Theta(\log n)$ 每个位,用于读写中间数据。输出只能写一次,以后不能访问和修改。我们描述一个确定性 $s$-计算NVD和FVD的工作空间算法 $P$ 这是可行的 $O((n^2/s)\log s)$ 时间。此外,我们将我们的 $s$-工作空间算法,使得对于任何给定的 $K\in O(\sqrt{s})$,我们计算所有阶的高阶Voronoi图的族 $k=1,\dots,K$ 为了 $P$ 总期望时间 $O (\frac{n^2 K^5}{s}(\log s+K2^{O(\log^* K)}))$ 或者在完全确定的时间里 $O(\frac{n^2 K^5}{s}(\log s+K\log K))$. 以前,对于Voronoi图,唯一已知的 $s$-工作空间算法在预期时间内运行 $O\bigl((n^2/s)\log s+n\log s\log^* s)$ [Korman等人,WADS'15]并且只适用于NVD(即, $k=1$). 与之前的算法不同,我们的新方法非常简单,不依赖于高级数据结构或随机抽样技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
期刊最新文献
On morphs of 1-plane graphs A Geometric Approach to Inelastic Collapse Near-optimal algorithms for point-line fitting problems Algorithms for approximate sparse regression and nearest induced hulls Recognizing weighted and seeded disk graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1