Does Machine Learning Amplify Pricing Errors in Housing Market? : Economics of ML Feedback Loops

Nikhil Malik
{"title":"Does Machine Learning Amplify Pricing Errors in Housing Market? : Economics of ML Feedback Loops","authors":"Nikhil Malik","doi":"10.2139/ssrn.3694922","DOIUrl":null,"url":null,"abstract":"Numerous ML pricing models (Zillow’s Zestimate, Redfin Estimate) have been deployed to make house sale price predictions. They appears to be independent and unbiased signal to resolve pricing friction in the housing market. These ML models – learn from live sale prices and influence the same sales simultaneously. This creates a Feedback Loop where the ML model is confounded by its own previous version. We theoretically show how this Feedback Loop creates a self fulfilling prophecy where ML over estimates its own prediction accuracy and market participants over rely on ML predictions. We use data from Zillow’s Zestimate to establish necessary primitives for the theoretical Feedback Loop phenomenon. We also structurally estimate seller payoffs under current and counterfactual ML regimes. We show that ML pricing, instead of alleviating, may widen payoff disparity in favor of sellers with greatest ability to price. This happens because ML lowers pricing Disagreement but adds pricing Bias, with both effects amplified under strong Feedback and high capacity ML.","PeriodicalId":13594,"journal":{"name":"Information Systems & Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems & Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3694922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Numerous ML pricing models (Zillow’s Zestimate, Redfin Estimate) have been deployed to make house sale price predictions. They appears to be independent and unbiased signal to resolve pricing friction in the housing market. These ML models – learn from live sale prices and influence the same sales simultaneously. This creates a Feedback Loop where the ML model is confounded by its own previous version. We theoretically show how this Feedback Loop creates a self fulfilling prophecy where ML over estimates its own prediction accuracy and market participants over rely on ML predictions. We use data from Zillow’s Zestimate to establish necessary primitives for the theoretical Feedback Loop phenomenon. We also structurally estimate seller payoffs under current and counterfactual ML regimes. We show that ML pricing, instead of alleviating, may widen payoff disparity in favor of sellers with greatest ability to price. This happens because ML lowers pricing Disagreement but adds pricing Bias, with both effects amplified under strong Feedback and high capacity ML.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习放大了房地产市场的定价错误吗?ML反馈循环的经济学
许多机器学习定价模型(Zillow的Zestimate, Redfin Estimate)已经被用来预测房屋销售价格。它们似乎是解决房地产市场定价摩擦的独立和公正的信号。这些机器学习模型——从现场销售价格中学习,同时影响相同的销售。这创造了一个反馈循环,其中ML模型被自己之前的版本所混淆。我们从理论上展示了这种反馈回路是如何创造一个自我实现的预言的,其中ML高估了自己的预测准确性,市场参与者过度依赖ML预测。我们使用Zillow的Zestimate数据来建立理论反馈回路现象的必要原语。我们还从结构上估计了当前和反事实ML制度下的卖方收益。我们表明,机器学习定价,而不是缓解,可能会扩大支付差距,有利于最具定价能力的卖家。这是因为机器学习降低了定价分歧,但增加了定价偏差,在强反馈和高容量机器学习下,这两种效应都被放大了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investing in Lending Technology: IT Spending in Banking Governing 'European values' Inside Data Flows: Interdisciplinary Perspectives More Competitive Search Through Regulation Business News and Business Cycles Efecto de la banda ancha sobre el valor agregado en los municipios de Colombia (Effect of Broadband on Added Value in Colombia Municipalities)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1