Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex.

G. Bashiri, J. Johnston, G. Evans, E. M. Bulloch, David C. Goldstone, E.N.M. Jirgis, S. Kleinboelting, A. Castell, R. J. Ramsay, Alexandra Manos-Turvey, Richard J. Payne, J. Lott, Edward N. Baker
{"title":"Structure and inhibition of subunit I of the anthranilate synthase complex of Mycobacterium tuberculosis and expression of the active complex.","authors":"G. Bashiri, J. Johnston, G. Evans, E. M. Bulloch, David C. Goldstone, E.N.M. Jirgis, S. Kleinboelting, A. Castell, R. J. Ramsay, Alexandra Manos-Turvey, Richard J. Payne, J. Lott, Edward N. Baker","doi":"10.1107/S1399004715017216","DOIUrl":null,"url":null,"abstract":"The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes via an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that Mtb-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S1399004715017216","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The tryptophan-biosynthesis pathway is essential for Mycobacterium tuberculosis (Mtb) to cause disease, but not all of the enzymes that catalyse this pathway in this organism have been identified. The structure and function of the enzyme complex that catalyses the first committed step in the pathway, the anthranilate synthase (AS) complex, have been analysed. It is shown that the open reading frames Rv1609 (trpE) and Rv0013 (trpG) encode the chorismate-utilizing (AS-I) and glutamine amidotransferase (AS-II) subunits of the AS complex, respectively. Biochemical assays show that when these subunits are co-expressed a bifunctional AS complex is obtained. Crystallization trials on Mtb-AS unexpectedly gave crystals containing only AS-I, presumably owing to its selective crystallization from solutions containing a mixture of the AS complex and free AS-I. The three-dimensional structure reveals that Mtb-AS-I dimerizes via an interface that has not previously been seen in AS complexes. As is the case in other bacteria, it is demonstrated that Mtb-AS shows cooperative allosteric inhibition by tryptophan, which can be rationalized based on interactions at this interface. Comparative inhibition studies on Mtb-AS-I and related enzymes highlight the potential for single inhibitory compounds to target multiple chorismate-utilizing enzymes for TB drug discovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结核分枝杆菌邻氨基甲酸合酶复合体I亚基的结构、抑制及活性复合体的表达。
色氨酸-生物合成途径对结核分枝杆菌(Mtb)致病至关重要,但并不是所有催化该途径的酶都已被确定。分析了催化该途径中第一步的酶复合物的结构和功能,即氨基甲酸酯合成酶(AS)复合物。结果表明,开放阅读框Rv1609 (trpE)和Rv0013 (trpG)分别编码AS复合物的利用chorisate (AS- i)和谷氨酰胺氨基转移酶(AS- ii)亚基。生化分析表明,当这些亚基共表达时,获得了双功能AS复合物。Mtb-AS的结晶试验意外地得到了只含有AS- 1的晶体,可能是由于它从含有AS复合物和自由AS- 1混合物的溶液中选择性结晶。三维结构揭示了mmb -AS- i通过一个以前在AS配合物中未见过的界面进行二聚化。与其他细菌的情况一样,研究表明Mtb-AS对色氨酸具有协同变构抑制作用,这可以根据该界面的相互作用加以合理化。对mtb - as - 1和相关酶的比较抑制研究强调了单一抑制化合物靶向多种利用chorisate酶的潜力,用于结核病药物的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
13.60%
发文量
0
审稿时长
3 months
期刊介绍: Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them. Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged. Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.
期刊最新文献
ADP bound to K46bE mutant ATP-grasp fold of Blastocystis hominis succinyl-CoA synthetase Crystal structure of Hen Egg White Lysozyme in complex with I3C Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae. Long wavelength Mesh&Collect native SAD phasing on microcrystals Mycobacterium tuberculosis LexA C-domain K197A
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1