G. Lawer-Yolar, B. Dawson-Andoh, Emmanuel Atta-Obeng
{"title":"Synthesis of Biodiesel from Tall Oil Fatty Acids by Homogeneous and Heterogeneous Catalysis","authors":"G. Lawer-Yolar, B. Dawson-Andoh, Emmanuel Atta-Obeng","doi":"10.3390/SUSCHEM2010012","DOIUrl":null,"url":null,"abstract":"This study compared the yield of biodiesel produced from tall oil fatty acids (TOFA) via (i) homogeneous catalyst (sulfuric acid) and (ii) a heterogeneous catalyst (Amberlyst® BD20, together with Ambersep BD 19 (Midcontinental Chemical Co., Olathe, KS, USA)® using a batch reactor. The effect of operation conditions including temperature, catalyst concentration, methanol: oil ratio and reaction time on esterification yield were investigated. Gas chromatographic data showed that the major fatty acids present in the TOFA are oleic acid (C18:1n9) and linoleic acid (C18:2n6). Homogenous catalysis yielded 96.76% biodiesel compared to 90.24% for heterogeneous catalysis. Optimized conditions for homogenous catalysis were at a catalyst concentration of 0.5 w/w%, 15:1 methanol: oil mass ratio at 55 °C for 60 min. FTIR results also showed that the homogeneous catalyst yielded a more complete reaction toward biodiesel production in a shorter time (60 min) compared to the heterogeneous catalyst (4.7 h). For heterogeneous catalysis, the highest yield and the lowest acid value were achieved after a second recycling because the reactants were not fully in contact with the catalyst during the first recycling. The catalyst did not show a reduction in catalytic activity even after the fourth recycling. However, the acid value was higher than that for ASTM standards for biodiesel.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/SUSCHEM2010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This study compared the yield of biodiesel produced from tall oil fatty acids (TOFA) via (i) homogeneous catalyst (sulfuric acid) and (ii) a heterogeneous catalyst (Amberlyst® BD20, together with Ambersep BD 19 (Midcontinental Chemical Co., Olathe, KS, USA)® using a batch reactor. The effect of operation conditions including temperature, catalyst concentration, methanol: oil ratio and reaction time on esterification yield were investigated. Gas chromatographic data showed that the major fatty acids present in the TOFA are oleic acid (C18:1n9) and linoleic acid (C18:2n6). Homogenous catalysis yielded 96.76% biodiesel compared to 90.24% for heterogeneous catalysis. Optimized conditions for homogenous catalysis were at a catalyst concentration of 0.5 w/w%, 15:1 methanol: oil mass ratio at 55 °C for 60 min. FTIR results also showed that the homogeneous catalyst yielded a more complete reaction toward biodiesel production in a shorter time (60 min) compared to the heterogeneous catalyst (4.7 h). For heterogeneous catalysis, the highest yield and the lowest acid value were achieved after a second recycling because the reactants were not fully in contact with the catalyst during the first recycling. The catalyst did not show a reduction in catalytic activity even after the fourth recycling. However, the acid value was higher than that for ASTM standards for biodiesel.