Synthesis of Biodiesel from Tall Oil Fatty Acids by Homogeneous and Heterogeneous Catalysis

G. Lawer-Yolar, B. Dawson-Andoh, Emmanuel Atta-Obeng
{"title":"Synthesis of Biodiesel from Tall Oil Fatty Acids by Homogeneous and Heterogeneous Catalysis","authors":"G. Lawer-Yolar, B. Dawson-Andoh, Emmanuel Atta-Obeng","doi":"10.3390/SUSCHEM2010012","DOIUrl":null,"url":null,"abstract":"This study compared the yield of biodiesel produced from tall oil fatty acids (TOFA) via (i) homogeneous catalyst (sulfuric acid) and (ii) a heterogeneous catalyst (Amberlyst® BD20, together with Ambersep BD 19 (Midcontinental Chemical Co., Olathe, KS, USA)® using a batch reactor. The effect of operation conditions including temperature, catalyst concentration, methanol: oil ratio and reaction time on esterification yield were investigated. Gas chromatographic data showed that the major fatty acids present in the TOFA are oleic acid (C18:1n9) and linoleic acid (C18:2n6). Homogenous catalysis yielded 96.76% biodiesel compared to 90.24% for heterogeneous catalysis. Optimized conditions for homogenous catalysis were at a catalyst concentration of 0.5 w/w%, 15:1 methanol: oil mass ratio at 55 °C for 60 min. FTIR results also showed that the homogeneous catalyst yielded a more complete reaction toward biodiesel production in a shorter time (60 min) compared to the heterogeneous catalyst (4.7 h). For heterogeneous catalysis, the highest yield and the lowest acid value were achieved after a second recycling because the reactants were not fully in contact with the catalyst during the first recycling. The catalyst did not show a reduction in catalytic activity even after the fourth recycling. However, the acid value was higher than that for ASTM standards for biodiesel.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/SUSCHEM2010012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This study compared the yield of biodiesel produced from tall oil fatty acids (TOFA) via (i) homogeneous catalyst (sulfuric acid) and (ii) a heterogeneous catalyst (Amberlyst® BD20, together with Ambersep BD 19 (Midcontinental Chemical Co., Olathe, KS, USA)® using a batch reactor. The effect of operation conditions including temperature, catalyst concentration, methanol: oil ratio and reaction time on esterification yield were investigated. Gas chromatographic data showed that the major fatty acids present in the TOFA are oleic acid (C18:1n9) and linoleic acid (C18:2n6). Homogenous catalysis yielded 96.76% biodiesel compared to 90.24% for heterogeneous catalysis. Optimized conditions for homogenous catalysis were at a catalyst concentration of 0.5 w/w%, 15:1 methanol: oil mass ratio at 55 °C for 60 min. FTIR results also showed that the homogeneous catalyst yielded a more complete reaction toward biodiesel production in a shorter time (60 min) compared to the heterogeneous catalyst (4.7 h). For heterogeneous catalysis, the highest yield and the lowest acid value were achieved after a second recycling because the reactants were not fully in contact with the catalyst during the first recycling. The catalyst did not show a reduction in catalytic activity even after the fourth recycling. However, the acid value was higher than that for ASTM standards for biodiesel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均相和多相催化合成生物柴油的研究
本研究比较了使用间歇式反应器通过(i)均相催化剂(硫酸)和(ii)非均相催化剂(Amberlyst®BD20,以及Ambersep BD 19 (Midcontinental Chemical Co., Olathe, KS, USA)®生产高油脂肪酸(TOFA)生产生物柴油的产率。考察了温度、催化剂浓度、甲醇油比和反应时间等操作条件对酯化收率的影响。气相色谱数据表明,TOFA中存在的主要脂肪酸是油酸(C18:1n9)和亚油酸(C18:2n6)。均相催化的生物柴油产率为96.76%,而多相催化的产率为90.24%。均相催化的最佳条件为:催化剂浓度为0.5 w/w%,甲醇浓度为15:1;FTIR结果还表明,与非均相催化剂(4.7 h)相比,均相催化剂在更短的时间内(60 min)产生了更完整的生物柴油生产反应。对于非均相催化剂,由于第一次循环时反应物没有完全与催化剂接触,因此在第二次循环后达到了最高产率和最低酸值。即使在第四次循环后,催化剂的催化活性也没有下降。然而,酸值高于生物柴油的ASTM标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy Recent Progress in Turning Waste into Catalysts for Green Syntheses A Perspective on Solar-Driven Electrochemical Routes for Sustainable Methanol Production Waste Lignocellulosic Biomass as a Source for Bioethanol Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1