Frictional effects in wind-driven ocean currents

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2020-04-16 DOI:10.1080/03091929.2020.1748614
A. Constantin
{"title":"Frictional effects in wind-driven ocean currents","authors":"A. Constantin","doi":"10.1080/03091929.2020.1748614","DOIUrl":null,"url":null,"abstract":"Surface ocean currents have a significant influence on the climate and their dynamics depend to a large extent on the behaviour of the vertical eddy viscosity. We present an analytic study of wind-driven surface currents for general depth-dependent vertical eddy viscosities. A novel formulation for Ekman-type flows, that relies of a transformation to polar coordinates, enables us to show that in the Northern Hemisphere the horizontal current profile decays in magnitude and turns clockwise with increasing depth, irrespective of the vertical variations in diffusivity. Using a perturbation approach, we also derive a formula for the deflection angle of the current at the surface from the wind direction and discuss its implications.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"2 1","pages":"1 - 14"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1748614","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 33

Abstract

Surface ocean currents have a significant influence on the climate and their dynamics depend to a large extent on the behaviour of the vertical eddy viscosity. We present an analytic study of wind-driven surface currents for general depth-dependent vertical eddy viscosities. A novel formulation for Ekman-type flows, that relies of a transformation to polar coordinates, enables us to show that in the Northern Hemisphere the horizontal current profile decays in magnitude and turns clockwise with increasing depth, irrespective of the vertical variations in diffusivity. Using a perturbation approach, we also derive a formula for the deflection angle of the current at the surface from the wind direction and discuss its implications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风驱动洋流的摩擦效应
表层洋流对气候有重要影响,其动力在很大程度上取决于垂直涡旋粘度的行为。我们提出了一般深度相关垂直涡粘度的风驱动表面流的分析研究。一个关于ekman型流的新公式,依赖于对极坐标的转换,使我们能够表明,在北半球,水平电流剖面的大小衰减,并随着深度的增加顺时针旋转,而不考虑扩散率的垂直变化。利用微扰方法,我们还推导出了地表气流从风向偏转角度的公式,并讨论了其含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1