Comparative Analysis of Deep Learning based Vehicle Detection Approaches

Nikita Singhal, Lalji Prasad
{"title":"Comparative Analysis of Deep Learning based Vehicle Detection Approaches","authors":"Nikita Singhal, Lalji Prasad","doi":"10.47164/ijngc.v14i2.976","DOIUrl":null,"url":null,"abstract":"Numerous traffic-related problems arise as a result of the exponential growth in the number of vehicles on the road. Vehicle detection is important in many smart transportation applications, including transportation planning, transportation management, traffic signal automation, and autonomous driving. Many researchers have spent a lot of time and effort on it over the last few decades, and they have achieved a lot. In this paper, we compared the performances of major deep learning models: Faster RCNN, YOLOv3, YOLOv4, YOLOv5, and SSD for vehicle detection with variable image size using two different vehicle detection datasets: Highway dataset and MIOTCD. The datasets that are most commonly used in this domain are also analyzed and reviewed. Additionally, we haveemphasized the opportunities and challenges in this domain for the future.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"45 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i2.976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous traffic-related problems arise as a result of the exponential growth in the number of vehicles on the road. Vehicle detection is important in many smart transportation applications, including transportation planning, transportation management, traffic signal automation, and autonomous driving. Many researchers have spent a lot of time and effort on it over the last few decades, and they have achieved a lot. In this paper, we compared the performances of major deep learning models: Faster RCNN, YOLOv3, YOLOv4, YOLOv5, and SSD for vehicle detection with variable image size using two different vehicle detection datasets: Highway dataset and MIOTCD. The datasets that are most commonly used in this domain are also analyzed and reviewed. Additionally, we haveemphasized the opportunities and challenges in this domain for the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的车辆检测方法比较分析
由于道路上车辆数量呈指数级增长,出现了许多与交通有关的问题。车辆检测在许多智能交通应用中都很重要,包括交通规划、交通管理、交通信号自动化和自动驾驶。在过去的几十年里,许多研究人员在这方面花费了大量的时间和精力,并取得了很多成果。在本文中,我们使用两种不同的车辆检测数据集:高速公路数据集和MIOTCD,比较了主要的深度学习模型:更快的RCNN、YOLOv3、YOLOv4、YOLOv5和SSD在可变图像大小的车辆检测中的性能。对该领域中最常用的数据集也进行了分析和回顾。此外,我们还强调了这一领域未来的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1