К.А. Крылова, Л.Р. Сафина, Р. Т. Мурзаев, С. А. Щербинин, Ю.А. Баимова, Р. Р. Мулюков
{"title":"Механические свойства и теплопроводность композитов на основе скомканного графена и наночастиц никеля: молекулярная динамика","authors":"К.А. Крылова, Л.Р. Сафина, Р. Т. Мурзаев, С. А. Щербинин, Ю.А. Баимова, Р. Р. Мулюков","doi":"10.21883/ftt.2023.09.56256.101","DOIUrl":null,"url":null,"abstract":"The mechanical properties and thermal conductivity of a composite based on crumpled graphene flakes and nickel nanoparticles obtained by high-temperature hydrostatic compression are investigated by the method of molecular dynamics. The pores of the graphene matrix of the composite are filled with nickel nanoparticles of different sizes (respectively, different contents of Ni - 8, 16 and 24 at.%). It was found that an increase in the amount of nickel on the one hand increases the thermal conductivity of the composite, and on the other hand reduces its strength, since strength is determined by the presence of a graphene grid, and thermal conductivity is determined by the presence of a conductive metal. The obtained results on thermophysical properties combined with high mechanical characteristics of Ni/graphene composites allow us to predict their application for the manufacture of new flexible electronics, supercapacitors and lithium-ion batteries.","PeriodicalId":24077,"journal":{"name":"Физика твердого тела","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Физика твердого тела","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21883/ftt.2023.09.56256.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanical properties and thermal conductivity of a composite based on crumpled graphene flakes and nickel nanoparticles obtained by high-temperature hydrostatic compression are investigated by the method of molecular dynamics. The pores of the graphene matrix of the composite are filled with nickel nanoparticles of different sizes (respectively, different contents of Ni - 8, 16 and 24 at.%). It was found that an increase in the amount of nickel on the one hand increases the thermal conductivity of the composite, and on the other hand reduces its strength, since strength is determined by the presence of a graphene grid, and thermal conductivity is determined by the presence of a conductive metal. The obtained results on thermophysical properties combined with high mechanical characteristics of Ni/graphene composites allow us to predict their application for the manufacture of new flexible electronics, supercapacitors and lithium-ion batteries.