Olusegun David Badewa, Andrew Gana Saba, E. Tsado, K. D. Tolorunse
{"title":"Selection of Early Bulking Performance Among Pro Vitamin A Cassava Genotypes Based on Selective Indices of Fresh Storage Root Yield and Harvest Index","authors":"Olusegun David Badewa, Andrew Gana Saba, E. Tsado, K. D. Tolorunse","doi":"10.11648/J.IJGG.20200801.12","DOIUrl":null,"url":null,"abstract":"Cassava provides energy sources for millions of people particularly in Africa where it is being planted mostly by rural subsistent farmers. The storage roots are rich in carbohydrates but deficient in vitamin A and consumption of which leads to hidden hunger as a result of insufficient intake of vitamins. The most widely approach in biofortification is conventional breeding which involves selection of varieties that is high in micronutrients such as vitamins and at the same time high yielding. However, cassava varieties cultivated by farmers usually stay long on the farmers field in a bid to wait to attain reasonable yield thereby preventing the land to be used for other crop cultivation. Another big issue is the problem of cattle invasion and bush fires that usually occurs in some areas. This has therefore necessitated the need to provide farmers with early bulking cassava varieties with considerable yield attainment and consequently reducing the stay of the crop on farmers’ field while also improving the nutritional status through biofortification. As a result of this development, the farmers would have harvested their crop before the usual invasion of animals on their farm. This study evaluated ten cassava genotypes (8 yellow genotypes and a check with 2 white cultivar) considering their harvest index and fresh storage root yield in order to select the highest performing genotypes and to determine the relationship between the two indices as a measure of performance in terms of yield. The first four genotype that had high Harvest Index was identified and these traits was also correlated with yield. The study revealed that IKN 120036 and IBA141092 were the highest performing genotypes in terms of harvest index and fresh storage root yield.","PeriodicalId":88902,"journal":{"name":"International journal of genetics and molecular biology","volume":"45 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of genetics and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJGG.20200801.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Cassava provides energy sources for millions of people particularly in Africa where it is being planted mostly by rural subsistent farmers. The storage roots are rich in carbohydrates but deficient in vitamin A and consumption of which leads to hidden hunger as a result of insufficient intake of vitamins. The most widely approach in biofortification is conventional breeding which involves selection of varieties that is high in micronutrients such as vitamins and at the same time high yielding. However, cassava varieties cultivated by farmers usually stay long on the farmers field in a bid to wait to attain reasonable yield thereby preventing the land to be used for other crop cultivation. Another big issue is the problem of cattle invasion and bush fires that usually occurs in some areas. This has therefore necessitated the need to provide farmers with early bulking cassava varieties with considerable yield attainment and consequently reducing the stay of the crop on farmers’ field while also improving the nutritional status through biofortification. As a result of this development, the farmers would have harvested their crop before the usual invasion of animals on their farm. This study evaluated ten cassava genotypes (8 yellow genotypes and a check with 2 white cultivar) considering their harvest index and fresh storage root yield in order to select the highest performing genotypes and to determine the relationship between the two indices as a measure of performance in terms of yield. The first four genotype that had high Harvest Index was identified and these traits was also correlated with yield. The study revealed that IKN 120036 and IBA141092 were the highest performing genotypes in terms of harvest index and fresh storage root yield.