Integration of the Hybrid Decision Support System and Machine Learning Algorithm to Determine Government Assistance Recipients: A Case Study in the Indonesian Funding Program

Mendel Pub Date : 2023-06-30 DOI:10.13164/mendel.2023.1.015
Indra Rusyadi Adiwijaya, S. Indratno, M. Siallagan, Agus Widodo, Eka Gandara
{"title":"Integration of the Hybrid Decision Support System and Machine Learning Algorithm to Determine Government Assistance Recipients: A Case Study in the Indonesian Funding Program","authors":"Indra Rusyadi Adiwijaya, S. Indratno, M. Siallagan, Agus Widodo, Eka Gandara","doi":"10.13164/mendel.2023.1.015","DOIUrl":null,"url":null,"abstract":"The Indonesian government provides incentives to facilitate community development through various funding programs to improve the economy and restore the national economy. However, there were many obstacles in determining the proper target beneficiaries. This study aims to assist decision-makers in determining targeted and accountable beneficiary candidates. In this study, a hybrid Analytical Hierarchy Process (AHP) method with Simple Additive Weighting (SAW) was used and integrated with machine learning modeling using Logistic Regression (LR). The AHP approach is used to determine the weight of each criterion, and the SAW method is used to sort out each available alternative with the help of an expert team's assessment. Instead, the LR method is used for the predictive analysis and classification of the resulting data.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2023.1.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Indonesian government provides incentives to facilitate community development through various funding programs to improve the economy and restore the national economy. However, there were many obstacles in determining the proper target beneficiaries. This study aims to assist decision-makers in determining targeted and accountable beneficiary candidates. In this study, a hybrid Analytical Hierarchy Process (AHP) method with Simple Additive Weighting (SAW) was used and integrated with machine learning modeling using Logistic Regression (LR). The AHP approach is used to determine the weight of each criterion, and the SAW method is used to sort out each available alternative with the help of an expert team's assessment. Instead, the LR method is used for the predictive analysis and classification of the resulting data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合决策支持系统和机器学习算法的集成,以确定政府援助接受者:印度尼西亚资助计划的案例研究
印尼政府通过各种资助项目提供激励措施,促进社区发展,以改善经济和恢复国民经济。但是,在确定适当的目标受益者方面有许多障碍。本研究旨在协助决策者确定有针对性和负责任的受益人候选人。本研究采用简单加性加权(SAW)混合层次分析法(AHP),并结合逻辑回归(LR)进行机器学习建模。采用AHP法确定各指标的权重,采用SAW法在专家小组的评估下对各备选方案进行分类。相反,LR方法用于对结果数据进行预测分析和分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1