P. Ortiz, Eleanor Casas, M. Orescanin, S. Powell, V. Petković, Micky Hall
{"title":"Uncertainty Calibration of Passive Microwave Brightness Temperatures Predicted by Bayesian Deep Learning Models","authors":"P. Ortiz, Eleanor Casas, M. Orescanin, S. Powell, V. Petković, Micky Hall","doi":"10.1175/aies-d-22-0056.1","DOIUrl":null,"url":null,"abstract":"\nVisible and infrared radiance products of geostationary orbiting platforms provide virtually continuous observations of Earth. In contrast, low Earth orbiters observe passive microwave (PMW) radiances at any location much less frequently. Prior literature demonstrates the ability of a Machine Learning (ML) approach to build a link between these two complementary radiance spectra by predicting PMW observations using infrared and visible products collected from geostationary instruments, which could potentially deliver a highly-desirable synthetic PMW product with nearly continuous spatio-temporal coverage. However, current ML models lack the ability to provide a measure of uncertainty of such a product, significantly limiting its applications. In this work, Bayesian Deep Learning is employed to generate synthetic Global Precipitation Measurement (GPM) mission Microwave Imager (GMI) data from Advanced Baseline Imager (ABI) observations with attached uncertainties over the ocean. The study first uses deterministic Residual Networks (ResNets) to generate synthetic GMI brightness temperatures with as little mean absolute error as 1.72 K at the ABI spatio-temporal resolution. Then, for the same task, we use three Bayesian ResNet models to produce a comparable amount of error while providing previously unavailable predictive variance (i.e. uncertainty) for each synthetic data point. We find that the Flipout configuration provides the most robust calibration between uncertainty and error across GMI frequencies, and then demonstrate how this additional information is useful for discarding high-error synthetic data points prior to use by downstream applications.","PeriodicalId":94369,"journal":{"name":"Artificial intelligence for the earth systems","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence for the earth systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/aies-d-22-0056.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Visible and infrared radiance products of geostationary orbiting platforms provide virtually continuous observations of Earth. In contrast, low Earth orbiters observe passive microwave (PMW) radiances at any location much less frequently. Prior literature demonstrates the ability of a Machine Learning (ML) approach to build a link between these two complementary radiance spectra by predicting PMW observations using infrared and visible products collected from geostationary instruments, which could potentially deliver a highly-desirable synthetic PMW product with nearly continuous spatio-temporal coverage. However, current ML models lack the ability to provide a measure of uncertainty of such a product, significantly limiting its applications. In this work, Bayesian Deep Learning is employed to generate synthetic Global Precipitation Measurement (GPM) mission Microwave Imager (GMI) data from Advanced Baseline Imager (ABI) observations with attached uncertainties over the ocean. The study first uses deterministic Residual Networks (ResNets) to generate synthetic GMI brightness temperatures with as little mean absolute error as 1.72 K at the ABI spatio-temporal resolution. Then, for the same task, we use three Bayesian ResNet models to produce a comparable amount of error while providing previously unavailable predictive variance (i.e. uncertainty) for each synthetic data point. We find that the Flipout configuration provides the most robust calibration between uncertainty and error across GMI frequencies, and then demonstrate how this additional information is useful for discarding high-error synthetic data points prior to use by downstream applications.