Xiaoyong Ma, Shuping Chen, L. Chen, Yujie Wang, Shufeng Jin, Yang Yu, Maoyuan Mi, Chaofan Shi, Yagang Shi
{"title":"EXPERIMENTAL STUDY ON THE FACTORS AFFECTING THE INSULATION PERFORMANCE OF FLAME-RETARDANT MULTILAYER INSULATION MATERIALS","authors":"Xiaoyong Ma, Shuping Chen, L. Chen, Yujie Wang, Shufeng Jin, Yang Yu, Maoyuan Mi, Chaofan Shi, Yagang Shi","doi":"10.17222/mit.2023.736","DOIUrl":null,"url":null,"abstract":"Flame-retardant multilayer insulation materials act as effective thermal insulation blankets of cryogenic containers that store flammable and explosive cryogenic liquids. This study used standard static liquid nitrogen boil-off calorimetry to test the insulation performance of eight groups of flame-retardant multilayer insulation materials with different wrapping parameters. The effects of four factors, namely the layer density, seaming process, number of reflector layer, and variable-density multilayer insulation arrangement, on the insulation performance were analysed. Three layer densities were considered: 4.47, 3.08, and 2.50 layers/mm. Two types of seaming processes were discussed: the overlapped and fold-over seaming processes. Three numbers of reflector layers were considered: 60, 70, and 80. Two variable-density multilayer insulation arrangements with similar thicknesses were discussed: 10-10-40 and 20-20-20 layers of reflectors allocated for low-, medium- and high-density segments. The conclusions are as follows: Decreasing the layer density enhances the performance of multilayer insulation; Using the fold-over seaming process results in less heat flux and lower apparent thermal conductivity; An increase in the number of reflector layers weakens radiative heat transfer, resulting in better thermal insulation; Furthermore, for a given wrapping thickness, reducing the number of reflectors appropriately in low- and medium-density segments improves the insulation performance; Optimizing and controlling the layer density of each density segment are also essential for variable-density multilayer insulation effects. This study provides supporting theories and reference data for practical engineering applications.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":"42 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.736","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flame-retardant multilayer insulation materials act as effective thermal insulation blankets of cryogenic containers that store flammable and explosive cryogenic liquids. This study used standard static liquid nitrogen boil-off calorimetry to test the insulation performance of eight groups of flame-retardant multilayer insulation materials with different wrapping parameters. The effects of four factors, namely the layer density, seaming process, number of reflector layer, and variable-density multilayer insulation arrangement, on the insulation performance were analysed. Three layer densities were considered: 4.47, 3.08, and 2.50 layers/mm. Two types of seaming processes were discussed: the overlapped and fold-over seaming processes. Three numbers of reflector layers were considered: 60, 70, and 80. Two variable-density multilayer insulation arrangements with similar thicknesses were discussed: 10-10-40 and 20-20-20 layers of reflectors allocated for low-, medium- and high-density segments. The conclusions are as follows: Decreasing the layer density enhances the performance of multilayer insulation; Using the fold-over seaming process results in less heat flux and lower apparent thermal conductivity; An increase in the number of reflector layers weakens radiative heat transfer, resulting in better thermal insulation; Furthermore, for a given wrapping thickness, reducing the number of reflectors appropriately in low- and medium-density segments improves the insulation performance; Optimizing and controlling the layer density of each density segment are also essential for variable-density multilayer insulation effects. This study provides supporting theories and reference data for practical engineering applications.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.