Semiparametric additive regression

J. Cuzick
{"title":"Semiparametric additive regression","authors":"J. Cuzick","doi":"10.1111/J.2517-6161.1992.TB01455.X","DOIUrl":null,"url":null,"abstract":"A simple estimator for β is proposed for the model y=x'β+g(1)+error, g smooth but unknown. The approach is to approximate the estimating equation obtained from a semiparametric likelihood and in the simplest case reduces to minimizing the distance between the pseudoresiduals y-x'β and a local linear cross-validated estimate of them. When the errors are independent with finite variance, the bias and variance of the estimate are computed and compared against the least squares estimate with g known","PeriodicalId":17425,"journal":{"name":"Journal of the royal statistical society series b-methodological","volume":"54 1","pages":"831-843"},"PeriodicalIF":0.0000,"publicationDate":"1992-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the royal statistical society series b-methodological","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.2517-6161.1992.TB01455.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

Abstract

A simple estimator for β is proposed for the model y=x'β+g(1)+error, g smooth but unknown. The approach is to approximate the estimating equation obtained from a semiparametric likelihood and in the simplest case reduces to minimizing the distance between the pseudoresiduals y-x'β and a local linear cross-validated estimate of them. When the errors are independent with finite variance, the bias and variance of the estimate are computed and compared against the least squares estimate with g known
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半参数加性回归
对于模型y=x′β+g(1)+误差,g光滑但未知,提出了一个简单的β估计量。该方法是近似由半参数似然得到的估计方程,在最简单的情况下,将假残差y-x′β与它们的局部线性交叉验证估计之间的距离减小到最小。当误差与有限方差无关时,计算估计的偏差和方差,并与已知g的最小二乘估计进行比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Proposal of the vote of thanks in discussion of Cule, M., Samworth, R., and Stewart, M.: Maximum likelihood estimation of a multidimensional logconcave density On Assessing goodness of fit of generalized linear models to sparse data Bayes Linear Sufficiency and Systems of Expert Posterior Assessments On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods Quasi‐Likelihood and Generalizing the Em Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1