{"title":"Fashion crimes: trending-term exploitation on the web","authors":"T. Moore, Nektarios Leontiadis, Nicolas Christin","doi":"10.1145/2046707.2046761","DOIUrl":null,"url":null,"abstract":"Online service providers are engaged in constant conflict with miscreants who try to siphon a portion of legitimate traffic to make illicit profits. We study the abuse of \"trending\" search terms, in which miscreants place links to malware-distributing or ad-filled web sites in web search and Twitter results, by collecting and analyzing measurements over nine months from multiple sources. We devise heuristics to identify ad-filled sites, report on the prevalence of malware and ad-filled sites in trending-term search results, and measure the success in blocking such content. We uncover collusion across offending domains using network analysis, and use regression analysis to conclude that both malware and ad-filled sites thrive on less popular, and less profitable trending terms. We build an economic model informed by our measurements and conclude that ad-filled sites and malware distribution may be economic substitutes. Finally, because our measurement interval spans February 2011, when Google announced changes to its ranking algorithm to root out low-quality sites, we can assess the impact of search-engine intervention on the profits miscreants can achieve.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"7 1","pages":"455-466"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2046761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Online service providers are engaged in constant conflict with miscreants who try to siphon a portion of legitimate traffic to make illicit profits. We study the abuse of "trending" search terms, in which miscreants place links to malware-distributing or ad-filled web sites in web search and Twitter results, by collecting and analyzing measurements over nine months from multiple sources. We devise heuristics to identify ad-filled sites, report on the prevalence of malware and ad-filled sites in trending-term search results, and measure the success in blocking such content. We uncover collusion across offending domains using network analysis, and use regression analysis to conclude that both malware and ad-filled sites thrive on less popular, and less profitable trending terms. We build an economic model informed by our measurements and conclude that ad-filled sites and malware distribution may be economic substitutes. Finally, because our measurement interval spans February 2011, when Google announced changes to its ranking algorithm to root out low-quality sites, we can assess the impact of search-engine intervention on the profits miscreants can achieve.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时尚犯罪:利用网络流行词汇
在线服务提供商经常与不法分子发生冲突,这些不法分子试图吸走一部分合法流量以赚取非法利润。我们通过收集和分析来自多个来源的9个多月的测量数据,研究了滥用“趋势”搜索词,即不法分子在网络搜索和Twitter结果中放置恶意软件分发或广告填充网站的链接。我们设计了启发式方法来识别广告填充网站,报告恶意软件和广告填充网站在趋势搜索结果中的流行程度,并衡量阻止此类内容的成功程度。我们通过网络分析发现了违规域名之间的勾结,并使用回归分析得出结论,恶意软件和充斥广告的网站都在不太受欢迎、利润较低的趋势术语上茁壮成长。我们根据我们的测量建立了一个经济模型,并得出结论,充斥广告的网站和恶意软件的传播可能是经济上的替代品。最后,由于我们的测量间隔跨越2011年2月,当谷歌宣布改变其排名算法以根除低质量网站时,我们可以评估搜索引擎干预对不法分子可以获得的利润的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
期刊最新文献
The Danger of Minimum Exposures: Understanding Cross-App Information Leaks on iOS through Multi-Side-Channel Learning. WristPrint: Characterizing User Re-identification Risks from Wrist-worn Accelerometry Data. CCS '21: 2021 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021 WAHC '21: Proceedings of the 9th on Workshop on Encrypted Computing & Applied Homomorphic Cryptography, Virtual Event, Korea, 15 November 2021 Incremental Learning Algorithm of Data Complexity Based on KNN Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1