EV-Gait: Event-Based Robust Gait Recognition Using Dynamic Vision Sensors

Yanxiang Wang, Bowen Du, Yiran Shen, Kai Wu, Guangrong Zhao, Jianguo Sun, Hongkai Wen
{"title":"EV-Gait: Event-Based Robust Gait Recognition Using Dynamic Vision Sensors","authors":"Yanxiang Wang, Bowen Du, Yiran Shen, Kai Wu, Guangrong Zhao, Jianguo Sun, Hongkai Wen","doi":"10.1109/CVPR.2019.00652","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new type of sensing modality, the Dynamic Vision Sensors (Event Cameras), for the task of gait recognition. Compared with the traditional RGB sensors, the event cameras have many unique advantages such as ultra low resources consumption, high temporal resolution and much larger dynamic range. However, those cameras only produce noisy and asynchronous events of intensity changes rather than frames, where conventional vision-based gait recognition algorithms can’t be directly applied. To address this, we propose a new Event-based Gait Recognition (EV-Gait) approach, which exploits motion consistency to effectively remove noise, and uses a deep neural network to recognise gait from the event streams. To evaluate the performance of EV-Gait, we collect two event-based gait datasets, one from real-world experiments and the other by converting the publicly available RGB gait recognition benchmark CASIA-B. Extensive experiments show that EV-Gait can get nearly 96% recognition accuracy in the real-world settings, while on the CASIA-B benchmark it achieves comparable performance with state-of-the-art RGB-based gait recognition approaches.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"14 1","pages":"6351-6360"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

Abstract

In this paper, we introduce a new type of sensing modality, the Dynamic Vision Sensors (Event Cameras), for the task of gait recognition. Compared with the traditional RGB sensors, the event cameras have many unique advantages such as ultra low resources consumption, high temporal resolution and much larger dynamic range. However, those cameras only produce noisy and asynchronous events of intensity changes rather than frames, where conventional vision-based gait recognition algorithms can’t be directly applied. To address this, we propose a new Event-based Gait Recognition (EV-Gait) approach, which exploits motion consistency to effectively remove noise, and uses a deep neural network to recognise gait from the event streams. To evaluate the performance of EV-Gait, we collect two event-based gait datasets, one from real-world experiments and the other by converting the publicly available RGB gait recognition benchmark CASIA-B. Extensive experiments show that EV-Gait can get nearly 96% recognition accuracy in the real-world settings, while on the CASIA-B benchmark it achieves comparable performance with state-of-the-art RGB-based gait recognition approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ev -步态:基于事件的鲁棒动态视觉传感器步态识别
在本文中,我们介绍了一种新的传感方式,即动态视觉传感器(事件相机),用于步态识别任务。与传统的RGB传感器相比,事件相机具有超低资源消耗、高时间分辨率和更大动态范围等独特优势。然而,这些摄像机只能产生噪声和强度变化的异步事件,而不是帧,这是传统的基于视觉的步态识别算法不能直接应用的地方。为了解决这个问题,我们提出了一种新的基于事件的步态识别(ev -步态)方法,该方法利用运动一致性有效地去除噪声,并使用深度神经网络从事件流中识别步态。为了评估ev -步态的性能,我们收集了两个基于事件的步态数据集,一个来自真实世界的实验,另一个通过转换公开可用的RGB步态识别基准CASIA-B。大量的实验表明,ev -步态在现实环境中可以获得近96%的识别准确率,而在CASIA-B基准测试中,它的性能与最先进的基于rgb的步态识别方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Context Ultra-Aggregation for Stereo Matching Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting Incremental Object Learning From Contiguous Views Progressive Teacher-Student Learning for Early Action Prediction Inverse Discriminative Networks for Handwritten Signature Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1