Lanmiao Liu, Chuang Yu, Siyang Song, Zhidong Su, A. Tapus
{"title":"Human Gesture Recognition with a Flow-based Model for Human Robot Interaction","authors":"Lanmiao Liu, Chuang Yu, Siyang Song, Zhidong Su, A. Tapus","doi":"10.1145/3568294.3580145","DOIUrl":null,"url":null,"abstract":"Human skeleton-based gesture classification plays a dominant role in social robotics. Learning the variety of human skeleton-based gestures can help the robot to continuously interact in an appropriate manner in a natural human-robot interaction (HRI). In this paper, we proposed a Flow-based model to classify human gesture actions with skeletal data. Instead of inferring new human skeleton actions from noisy data using a retrained model, our end-to-end model can expand the diversity of labels for gesture recognition from noisy data without retraining the model. At first, our model focuses on detecting five human gesture actions (i.e., come on, right up, left up, hug, and noise-random action). The accuracy of our online human gesture recognition system is as well as the offline one. Meanwhile, both attain 100% accuracy among the first four actions. Our proposed method is more efficient for inference of new human gesture action without retraining, which acquires about 90% accuracy for noise-random action. The gesture recognition system has been applied to the robot's reaction toward the human gesture, which is promising to facilitate a natural human-robot interaction.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"28 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568294.3580145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Human skeleton-based gesture classification plays a dominant role in social robotics. Learning the variety of human skeleton-based gestures can help the robot to continuously interact in an appropriate manner in a natural human-robot interaction (HRI). In this paper, we proposed a Flow-based model to classify human gesture actions with skeletal data. Instead of inferring new human skeleton actions from noisy data using a retrained model, our end-to-end model can expand the diversity of labels for gesture recognition from noisy data without retraining the model. At first, our model focuses on detecting five human gesture actions (i.e., come on, right up, left up, hug, and noise-random action). The accuracy of our online human gesture recognition system is as well as the offline one. Meanwhile, both attain 100% accuracy among the first four actions. Our proposed method is more efficient for inference of new human gesture action without retraining, which acquires about 90% accuracy for noise-random action. The gesture recognition system has been applied to the robot's reaction toward the human gesture, which is promising to facilitate a natural human-robot interaction.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.