Optimasi Cacah Klaster pada Klasterisasi dengan Algoritma KMeans Menggunakan Silhouette Coeficient dan Elbow Method

M. Guntara, Nafisatul Lutfi
{"title":"Optimasi Cacah Klaster pada Klasterisasi dengan Algoritma KMeans Menggunakan Silhouette Coeficient dan Elbow Method","authors":"M. Guntara, Nafisatul Lutfi","doi":"10.26798/juti.v2i1.944","DOIUrl":null,"url":null,"abstract":"Mahasiswa drop out (DO) atau undur diri merupakan masalah yang perlu ditangani sedini mungkin. Banyaknya mahasiswa drop out (DO) akan menjadikan kualitas kinerja suatu perguruan tinggi akan menurun, disamping itu juga sebisa mungkin untuk dikurangi kasus mahasiswa drop out tersebut karena akan berdampak pada apresiasi masyarakat terhadap sistim pendidikan di perguruan tinggi.Untuk mengetahui terjadinya mahasiswa DO diperlukan klasterisasi, yang dalam hal ini proses klasterisasi tersebut digunakan Algoritma K-Means. Klaster yang baik adalah yang memiliki tingkat separasi yang tinggi.Untuk menentukan cacah klaster yang paling baik (optimal) digunakan 2 metode yakni Elbow Method dan Silhoutte Coefficient penggunaan 2 metode ini sekalgus untuk menguji sejauhmana kesamaan hasil penentuan cacah klasternya. Data training yang akan dibuat klas/label berjenis unsupervised learning dengan atribut: NIM, jumlah semester tidak aktif, jumlah sks, IPK, angkatan dan jumlah record (mahasiswa) 836 mahasiswa.Berdasarkan data training tersebut kemudian menggunakan Elbow Method dan Silhuette dihasilkan penentuan cacah klaster optimal yang sama yakni k=2. Berdasarkan nilai k ini kemudian dilakukan proses klasterisasi menggunakan algoritma K-Means dan menghasilkan klas Cluster_0 dan Cluster_1. Dari sisi jumlah klaster untuk Cluster_0 terdapat 755 mahasiswa dan Cluster_1 terdapat 85 mahasiswa. Cluster_0 ini didominasi mahasiswa DO karena IPK<2,00, jumlah sks yang diambil <90 sks, dan tidak-aktif-kuliah (cuti) > 4 semester.","PeriodicalId":31796,"journal":{"name":"JUTI Jurnal Ilmiah Teknologi Informasi","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JUTI Jurnal Ilmiah Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26798/juti.v2i1.944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mahasiswa drop out (DO) atau undur diri merupakan masalah yang perlu ditangani sedini mungkin. Banyaknya mahasiswa drop out (DO) akan menjadikan kualitas kinerja suatu perguruan tinggi akan menurun, disamping itu juga sebisa mungkin untuk dikurangi kasus mahasiswa drop out tersebut karena akan berdampak pada apresiasi masyarakat terhadap sistim pendidikan di perguruan tinggi.Untuk mengetahui terjadinya mahasiswa DO diperlukan klasterisasi, yang dalam hal ini proses klasterisasi tersebut digunakan Algoritma K-Means. Klaster yang baik adalah yang memiliki tingkat separasi yang tinggi.Untuk menentukan cacah klaster yang paling baik (optimal) digunakan 2 metode yakni Elbow Method dan Silhoutte Coefficient penggunaan 2 metode ini sekalgus untuk menguji sejauhmana kesamaan hasil penentuan cacah klasternya. Data training yang akan dibuat klas/label berjenis unsupervised learning dengan atribut: NIM, jumlah semester tidak aktif, jumlah sks, IPK, angkatan dan jumlah record (mahasiswa) 836 mahasiswa.Berdasarkan data training tersebut kemudian menggunakan Elbow Method dan Silhuette dihasilkan penentuan cacah klaster optimal yang sama yakni k=2. Berdasarkan nilai k ini kemudian dilakukan proses klasterisasi menggunakan algoritma K-Means dan menghasilkan klas Cluster_0 dan Cluster_1. Dari sisi jumlah klaster untuk Cluster_0 terdapat 755 mahasiswa dan Cluster_1 terdapat 85 mahasiswa. Cluster_0 ini didominasi mahasiswa DO karena IPK<2,00, jumlah sks yang diambil <90 sks, dan tidak-aktif-kuliah (cuti) > 4 semester.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
退学或退休是一个需要尽快解决的问题。退学的学生数量将会降低一所大学的成绩,同时也会尽可能减少退学的机会,因为这将影响社区对大学教育系统的认识。要确定一个学生的起源,需要严格的规律性,在这种情况下,规律性过程使用了k -均值算法。好的集群是高度分离的。为了确定最佳的聚束材料使用了两种方法,即Elbow Method和Silhoutte coefte这两种方法的使用方法,它们可以在不同程度上检测它们的凝聚力。课程数据是由klas/标签组成的,其属性是:尼姆、较不活跃的学期数、sks、IPK、力和836名学生的成绩(学生)。根据培训数据,然后使用Elbow Method和Silhuette得出了相同的最佳集群k=2的优先性判断。基于k值,然后通过基于k - means的算法进行排序过程,生成Cluster_0和Cluster_1。从0的集群中,有755个学生,有85个学生。这种Cluster_0以4学期的gpk为主。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Rancang Bangun Sistem Presensi Mahasiswa Berbasis Web Dengan Pendekatan PIECES IMPLEMENTASI METODE PROTOTYPE UNTUK PERANCANGAN SISTEM INFORMASI PENYEDIA JASA MONTIR SISTEM PENDUKUNG KEPUTUSAN MENENTUKAN SISWA PENERIMA BEASISWA DENGAN METODE SIMPLE ADDITIVE WEIGHTING BERBASIS PAAS CLOUD COMPUTING Sistem Informasi Helpdesk Dalam Tata Kelola Teknologi Informasi Pada Diskominfo dan SP Analisis Faktor Kesuksesan Aplikasi HRIS Mobile Menggunakan Model Delone And Mclean
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1