{"title":"Curse of Optimality, and How We Break It","authors":"X. Zhou","doi":"10.2139/ssrn.3845462","DOIUrl":null,"url":null,"abstract":"We strive to seek optimality, but often find ourselves trapped in bad \"optimal\" solutions that are either local optimizers, or too rigid to leave any room for errors, or simply based on wrong models. A way to break this \"curse of optimality\" is to engage exploration through randomization. Exploration broadens search space, provides flexibility, and facilitates learning via trial and error. We review some of the latest development of this exploratory approach in the stochastic control setting with continuous time and spaces.","PeriodicalId":18611,"journal":{"name":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microeconomics: General Equilibrium & Disequilibrium Models of Financial Markets eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3845462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We strive to seek optimality, but often find ourselves trapped in bad "optimal" solutions that are either local optimizers, or too rigid to leave any room for errors, or simply based on wrong models. A way to break this "curse of optimality" is to engage exploration through randomization. Exploration broadens search space, provides flexibility, and facilitates learning via trial and error. We review some of the latest development of this exploratory approach in the stochastic control setting with continuous time and spaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优的诅咒,以及我们如何打破它
我们努力寻求最优性,但经常发现自己被困在糟糕的“最优”解决方案中,这些解决方案要么是局部优化器,要么过于严格,没有任何犯错的余地,要么只是基于错误的模型。打破这种“最优性诅咒”的一种方法是通过随机化进行探索。探索拓宽了搜索空间,提供了灵活性,并促进了通过试错来学习。本文综述了该方法在具有连续时间和空间的随机控制条件下的一些最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for Investing with Altruism The Inviolable Law of Demand How Much Does the Market Know? Who Trades at the Close? Implications for Price Discovery and Liquidity Trade and the Rise of Ancient Greek City-States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1