Improving Neural Machine Translation Robustness via Data Augmentation: Beyond Back-Translation

Zhenhao Li, Lucia Specia
{"title":"Improving Neural Machine Translation Robustness via Data Augmentation: Beyond Back-Translation","authors":"Zhenhao Li, Lucia Specia","doi":"10.18653/v1/D19-5543","DOIUrl":null,"url":null,"abstract":"Neural Machine Translation (NMT) models have been proved strong when translating clean texts, but they are very sensitive to noise in the input. Improving NMT models robustness can be seen as a form of “domain” adaption to noise. The recently created Machine Translation on Noisy Text task corpus provides noisy-clean parallel data for a few language pairs, but this data is very limited in size and diversity. The state-of-the-art approaches are heavily dependent on large volumes of back-translated data. This paper has two main contributions: Firstly, we propose new data augmentation methods to extend limited noisy data and further improve NMT robustness to noise while keeping the models small. Secondly, we explore the effect of utilizing noise from external data in the form of speech transcripts and show that it could help robustness.","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"34 1","pages":"328-336"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-5543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Neural Machine Translation (NMT) models have been proved strong when translating clean texts, but they are very sensitive to noise in the input. Improving NMT models robustness can be seen as a form of “domain” adaption to noise. The recently created Machine Translation on Noisy Text task corpus provides noisy-clean parallel data for a few language pairs, but this data is very limited in size and diversity. The state-of-the-art approaches are heavily dependent on large volumes of back-translated data. This paper has two main contributions: Firstly, we propose new data augmentation methods to extend limited noisy data and further improve NMT robustness to noise while keeping the models small. Secondly, we explore the effect of utilizing noise from external data in the form of speech transcripts and show that it could help robustness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过数据增强提高神经机器翻译的鲁棒性:超越反向翻译
神经机器翻译(NMT)模型在翻译干净文本时已被证明是强大的,但它们对输入中的噪声非常敏感。改进NMT模型的鲁棒性可以看作是对噪声的“域”适应的一种形式。最近创建的基于噪声文本的机器翻译任务语料库为一些语言对提供了噪声清洁的并行数据,但这些数据在大小和多样性方面非常有限。最先进的方法严重依赖于大量的反向翻译数据。本文有两个主要贡献:首先,我们提出了新的数据增强方法来扩展有限的噪声数据,进一步提高NMT对噪声的鲁棒性,同时保持模型的小。其次,我们探索了以语音转录本的形式利用外部数据噪声的效果,并表明它可以帮助鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records. MedAdapter: Efficient Test-Time Adaptation of Large Language Models Towards Medical Reasoning. Two Directions for Clinical Data Generation with Large Language Models: Data-to-Label and Label-to-Data. Hierarchical Pretraining on Multimodal Electronic Health Records. An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1