Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force

Q1 Physics and Astronomy Capillarity Pub Date : 2022-05-31 DOI:10.46690/capi.2022.03.02
Mingjia Liu, Yonglin Chen, W. Cheng, Siyu Chen, Tao Yu, Weidong Yang
{"title":"Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force","authors":"Mingjia Liu, Yonglin Chen, W. Cheng, Siyu Chen, Tao Yu, Weidong Yang","doi":"10.46690/capi.2022.03.02","DOIUrl":null,"url":null,"abstract":"Cited as: Liu, M., Chen, Y., Cheng, W., Chen, S., Yu, T., Yang, W. Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity, 2022, 5(3): 51-64. https://doi.org/10.46690/capi.2022.03.02 Abstract: Various types of micro/nano functional devices are being widely designed as optical switches, micro scanners, micromirrors and other core optical devices. The continuing miniaturization of the functional devices makes the size dependence of electromechanical property significant in micro/nano scale due to the sharp increase of surface interactions such as capillary force from liquid bridge, van der Waals and Casimir forces from quantum fluctuations. The surface interactions can cause the pull-in instability, adhesion between parts, and even failure of device. This work provides an active control method to avoid the pull-in instability of an electrostatically driven circular micromirror by applying voltage on a torsional piezoelectric composite structure. The influences of the three types are compared of dispersion forces on the electromechanical stability of the micromirror actuator. A comprehensive electromechanical model of a torsional piezoelectric beam was established to numerically investigate the electromechanical coupling of the micromirror. The results show that the influence of capillary force on the stability of the micromirror is as significant as van der Waals force and Casimir force. By introducing piezoelectric nanoplates into the laminated torsional structure, the micromirror stability can be controlled based on the piezoelectric effect of the torsional piezoelectric composite structure. This work can contribute to the structural optimization design and manufacture of micromirror systems.","PeriodicalId":34047,"journal":{"name":"Capillarity","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Capillarity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46690/capi.2022.03.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 1

Abstract

Cited as: Liu, M., Chen, Y., Cheng, W., Chen, S., Yu, T., Yang, W. Controllable electromechanical stability of a torsional micromirror actuator with piezoelectric composite structure under capillary force. Capillarity, 2022, 5(3): 51-64. https://doi.org/10.46690/capi.2022.03.02 Abstract: Various types of micro/nano functional devices are being widely designed as optical switches, micro scanners, micromirrors and other core optical devices. The continuing miniaturization of the functional devices makes the size dependence of electromechanical property significant in micro/nano scale due to the sharp increase of surface interactions such as capillary force from liquid bridge, van der Waals and Casimir forces from quantum fluctuations. The surface interactions can cause the pull-in instability, adhesion between parts, and even failure of device. This work provides an active control method to avoid the pull-in instability of an electrostatically driven circular micromirror by applying voltage on a torsional piezoelectric composite structure. The influences of the three types are compared of dispersion forces on the electromechanical stability of the micromirror actuator. A comprehensive electromechanical model of a torsional piezoelectric beam was established to numerically investigate the electromechanical coupling of the micromirror. The results show that the influence of capillary force on the stability of the micromirror is as significant as van der Waals force and Casimir force. By introducing piezoelectric nanoplates into the laminated torsional structure, the micromirror stability can be controlled based on the piezoelectric effect of the torsional piezoelectric composite structure. This work can contribute to the structural optimization design and manufacture of micromirror systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
毛细管力作用下压电复合结构扭转微镜致动器的可控机电稳定性
引用自:刘敏,陈勇,程伟,陈松,于,天,杨伟。毛细力作用下压电复合结构扭转微镜驱动器的可控机电稳定性。毛细管学,2022,5(3):51-64。摘要:各类微纳功能器件被广泛设计为光开关、微扫描仪、微镜等核心光学器件。由于表面相互作用的急剧增加,如液体桥的毛细力、量子涨落的范德华力和卡西米尔力,功能器件的持续小型化使得机电性能在微/纳米尺度上的尺寸依赖性显著。表面的相互作用会导致器件的拉入不稳定、部件间的粘连,甚至失效。通过对扭转压电复合材料结构施加电压,提出了一种避免静电驱动圆形微镜拉入失稳的主动控制方法。比较了三种分散力对微镜作动器机电稳定性的影响。建立了扭转压电梁的综合机电模型,对微镜的机电耦合进行了数值研究。结果表明,毛细管力对微镜稳定性的影响与范德华力和卡西米尔力一样显著。通过在扭转复合材料中引入压电纳米片,利用扭转复合材料结构的压电效应控制微镜的稳定性。这一研究成果为微镜系统的结构优化设计和制造提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Capillarity
Capillarity Physics and Astronomy-Surfaces and Interfaces
CiteScore
7.10
自引率
0.00%
发文量
15
审稿时长
2~3 weeks
期刊介绍: Capillarity publishes high-quality original research articles and current reviews on fundamental scientific principles and innovations of capillarity in physics, chemistry, biology, environmental science and related emerging fields. All advances in theoretical, numerical and experimental approaches to capillarity in capillary tube and interface dominated structure and system area are welcome. The following topics are within (but not limited to) the scope of capillarity: i) Capillary-driven phenomenon in natural/artificial tubes, porous and nanoporous materials ii) Fundamental mechanisms of capillarity aided by theory and experiments iii) Spontaneous imbibition, adsorption, wicking and related applications of capillarity in hydrocarbon production, chemical process and biological sciences iv) Static and dynamic interfacial processes, surfactants, wettability, film and colloids v) New approaches and technologies on capillarity Capillarity is a quarterly open access journal and free to read for all. The journal provides a communicate platform for researchers who are interested in all fields of capillary phenomenon.
期刊最新文献
The effect of methylene blue and organic acids on the wettability of sandstone formation: Implications for enhanced oil recovery Imbibition oil recovery from tight reservoir cores using microemulsion: Experiment and simulation Role of interfacial tension on wettability-controlled fluid displacement in porous rock: A capillary-dominated flow and how to control it CO2 capillary trapping in layered sandstone dominated by inertial force and gravity A critical review of capillary pressure behavior and characterization in fractional-wet reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1