On a Homotopy Perturbation Treatment of Steady Laminar Forced Convection Flow over a Nonlinearly Stretching Porous Sheet

Q4 Engineering 工程设计学报 Pub Date : 2014-04-08 DOI:10.1155/2014/297163
N. Dalir, S. Nourazar
{"title":"On a Homotopy Perturbation Treatment of Steady Laminar Forced Convection Flow over a Nonlinearly Stretching Porous Sheet","authors":"N. Dalir, S. Nourazar","doi":"10.1155/2014/297163","DOIUrl":null,"url":null,"abstract":"The steady two-dimensional laminar forced convection boundary layer flow of an incompressible viscous Newtonian fluid over a nonlinearly stretching porous (permeable) sheet with suction is considered. The sheet’s permeability is also considered to be nonlinear. The boundary layer equations are transformed by similarity transformations to a nonlinear ordinary differential equation (ODE). Then the homotopy perturbation method (HPM) is used to solve the resultant nonlinear ODE. The dimensionless entrainment parameter and the dimensionless sheet surface shear stress are obtained for various values of the suction parameter and the nonlinearity factor of sheet stretching and permeability. The results indicate that the dimensionless sheet surface shear stress decreases with the increase of suction parameter. The results of present HPM solution are compared to the values obtained in a previous study by the homotopy analysis method (HAM). The HPM results show that they are in good agreement with the HAM results within 2% error.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"25 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2014/297163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The steady two-dimensional laminar forced convection boundary layer flow of an incompressible viscous Newtonian fluid over a nonlinearly stretching porous (permeable) sheet with suction is considered. The sheet’s permeability is also considered to be nonlinear. The boundary layer equations are transformed by similarity transformations to a nonlinear ordinary differential equation (ODE). Then the homotopy perturbation method (HPM) is used to solve the resultant nonlinear ODE. The dimensionless entrainment parameter and the dimensionless sheet surface shear stress are obtained for various values of the suction parameter and the nonlinearity factor of sheet stretching and permeability. The results indicate that the dimensionless sheet surface shear stress decreases with the increase of suction parameter. The results of present HPM solution are compared to the values obtained in a previous study by the homotopy analysis method (HAM). The HPM results show that they are in good agreement with the HAM results within 2% error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非线性拉伸多孔板上稳定层流强迫对流的同伦摄动处理
研究了不可压缩粘性牛顿流体在具有吸力的非线性拉伸多孔(透)板上的二维定常层流强迫对流边界层流动。薄片的磁导率也被认为是非线性的。用相似变换将边界层方程转化为非线性常微分方程。然后用同伦摄动法求解得到的非线性ODE。在吸力参数、拉伸和渗透性非线性系数的不同取值下,得到了无因次夹带参数和无因次薄板表面剪应力。结果表明,无因次剪切应力随吸力参数的增大而减小。并将本解的结果与前人用同伦分析法(HAM)得到的结果进行了比较。HPM结果与HAM结果吻合较好,误差在2%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
工程设计学报
工程设计学报 Engineering-Engineering (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
2447
审稿时长
14 weeks
期刊介绍: Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.
期刊最新文献
Innovative design of box elevator epidemic prevention function integrating AD and TRIZ Discrete element simulation for evolution characteristics of multi-funnel mineral-rock force chain under flexible isolation layer Application progress of artificial intelligence in military confrontation Cloud storage data integrity audit based on an index–stub table Clinical named entity recognition from Chinese electronic medical records using a double-layer annotation model combining a domain dictionary with CRF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1