ClusterSR: Cluster-Aware Scattered Repair in Erasure-Coded Storage

Zhirong Shen, J. Shu, Zhijie Huang, Yingxun Fu
{"title":"ClusterSR: Cluster-Aware Scattered Repair in Erasure-Coded Storage","authors":"Zhirong Shen, J. Shu, Zhijie Huang, Yingxun Fu","doi":"10.1109/IPDPS47924.2020.00015","DOIUrl":null,"url":null,"abstract":"Erasure coding is a storage-efficient means to guarantee data reliability in today’s commodity storage systems, yet its repair performance is seriously hindered by the substantial repair traffic. Repair in clustered storage systems is even complicated because of the scarcity of the cross-cluster bandwidth. We present ClusterSR, a cluster-aware scattered repair approach. ClusterSR minimizes the cross-cluster repair traffic by carefully choosing the clusters for reading and repairing chunks. It further balances the cross-cluster repair traffic by scheduling the repair of multiple chunks. Large-scale simulation and Alibaba Cloud ECS experiments show that ClusterSR can reduce 6.7-52.7% of the cross-cluster repair traffic and improve 14.1-68.8% of the repair throughput.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"24 1","pages":"42-51"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Erasure coding is a storage-efficient means to guarantee data reliability in today’s commodity storage systems, yet its repair performance is seriously hindered by the substantial repair traffic. Repair in clustered storage systems is even complicated because of the scarcity of the cross-cluster bandwidth. We present ClusterSR, a cluster-aware scattered repair approach. ClusterSR minimizes the cross-cluster repair traffic by carefully choosing the clusters for reading and repairing chunks. It further balances the cross-cluster repair traffic by scheduling the repair of multiple chunks. Large-scale simulation and Alibaba Cloud ECS experiments show that ClusterSR can reduce 6.7-52.7% of the cross-cluster repair traffic and improve 14.1-68.8% of the repair throughput.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
擦除编码存储中簇感知的分散修复
在当今的商品存储系统中,Erasure编码是保证数据可靠性的一种有效的存储手段,但其修复性能受到大量修复业务的严重影响。由于跨集群带宽的稀缺性,集群存储系统的修复变得更加复杂。我们提出了ClusterSR,一种集群感知的分散修复方法。ClusterSR通过仔细选择读取和修复块的集群来最小化跨集群修复流量。它通过调度多个块的修复来进一步平衡跨集群的修复流量。大规模仿真和阿里云ECS实验表明,ClusterSR可以减少6.7-52.7%的跨集群修复流量,提高14.1-68.8%的修复吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynch-SGBDT: Train Stochastic Gradient Boosting Decision Trees in an Asynchronous Parallel Manner Resilience at Extreme Scale and Connections with Other Domains A Tale of Two C's: Convergence and Composability 12 Ways to Fool the Masses with Irreproducible Results Is Asymptotic Cost Analysis Useful in Developing Practical Parallel Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1