Use of Neural Networks for Tsunami Maximum Height and Arrival Time Predictions

IF 6.5 3区 工程技术 Q1 ENGINEERING, GEOLOGICAL Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards Pub Date : 2022-06-13 DOI:10.3390/geohazards3020017
Juan F. Rodríguez, J. Macías, M. Castro, Marc de la Asunción, C. Sánchez-Linares
{"title":"Use of Neural Networks for Tsunami Maximum Height and Arrival Time Predictions","authors":"Juan F. Rodríguez, J. Macías, M. Castro, Marc de la Asunción, C. Sánchez-Linares","doi":"10.3390/geohazards3020017","DOIUrl":null,"url":null,"abstract":"Operational TEWS play a key role in reducing tsunami impact on populated coastal areas around the world in the event of an earthquake-generated tsunami. Traditionally, these systems in the NEAM region have relied on the implementation of decision matrices. The very short arrival times of the tsunami waves from generation to impact in this region have made it not possible to use real-time on-the-fly simulations to produce more accurate alert levels. In these cases, when time restriction is so demanding, an alternative to the use of decision matrices is the use of datasets of precomputed tsunami scenarios. In this paper we propose the use of neural networks to predict the tsunami maximum height and arrival time in the context of TEWS. Different neural networks were trained to solve these problems. Additionally, ensemble techniques were used to obtain better results.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"8 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geohazards3020017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 3

Abstract

Operational TEWS play a key role in reducing tsunami impact on populated coastal areas around the world in the event of an earthquake-generated tsunami. Traditionally, these systems in the NEAM region have relied on the implementation of decision matrices. The very short arrival times of the tsunami waves from generation to impact in this region have made it not possible to use real-time on-the-fly simulations to produce more accurate alert levels. In these cases, when time restriction is so demanding, an alternative to the use of decision matrices is the use of datasets of precomputed tsunami scenarios. In this paper we propose the use of neural networks to predict the tsunami maximum height and arrival time in the context of TEWS. Different neural networks were trained to solve these problems. Additionally, ensemble techniques were used to obtain better results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用神经网络预测海啸最大高度和到达时间
在发生地震引起的海啸时,TEWS在减少海啸对世界各地人口稠密的沿海地区的影响方面发挥着关键作用。传统上,NEAM地区的这些系统依赖于决策矩阵的实现。在该地区,海啸波从产生到产生影响的时间非常短,因此不可能使用实时动态模拟来产生更准确的警报级别。在这些情况下,当时间限制如此苛刻时,使用决策矩阵的替代方案是使用预先计算的海啸情景的数据集。本文提出在TEWS环境下,利用神经网络预测海啸最大高度和到达时间。不同的神经网络被训练来解决这些问题。此外,采用集成技术获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
10.40%
发文量
31
期刊介绍: Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.
期刊最新文献
Evaluating the Impact of Engineering Works in Megatidal Areas Using Satellite Images—Case of the Mont-Saint-Michel Bay, France Assessment of a Machine Learning Algorithm Using Web Images for Flood Detection and Water Level Estimates Digital geotechnics: from data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering Induced Seismicity Hazard Assessment for a Potential CO2 Storage Site in the Southern San Joaquin Basin, CA Novel evaluation methodology for mechanical behaviour and instability risk of roof structure using limited investigation data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1