Pan-Arctic ocean wind and wave data by spaceborne SAR

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-12-07 DOI:10.1080/20964471.2021.1996858
Xiaoming Li, Ke Wu, Bingqing Huang
{"title":"Pan-Arctic ocean wind and wave data by spaceborne SAR","authors":"Xiaoming Li, Ke Wu, Bingqing Huang","doi":"10.1080/20964471.2021.1996858","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Arctic is one of the most significant changing areas on the Earth under the climate change scenario. More regions in the Arctic are becoming ice-free oceans in the melting season or through the whole year. Therefore, ocean wind and wave, as the two most important parameters in the air–sea interface, are drawing significant attention to the Arctic Ocean. Scatterometer and radar altimeter are the two traditional remote sensing instruments for ocean wind and wave observations, while the former is limited by coarse spatial resolution and the latter has small spatial coverage. Wind and wave data in high spatial resolution and wide coverage by synthetic aperture radar (SAR) are currently lacking in the Arctic Ocean. We developed an ocean wind and wave dataset by Sentinel-1 SAR in the pan-Arctic Ocean (above 60°N), covering January 2017 to May 2021. By comparing with sea surface wind speed data of scatterometer, the SAR-retrieved wind data achieve an accuracy of 1.23 m/s, in terms of root mean square error (RMSE). Compared with significant wave height data of radar altimeter, the SAR retrievals have an RMSE of 0.66 m. The data records are in the standard NetCDF-4 format. The dataset is publicly available at: http://www.dx.doi.org/10.11922/sciencedb.00834.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"27 1","pages":"144 - 163"},"PeriodicalIF":4.2000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1996858","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

ABSTRACT The Arctic is one of the most significant changing areas on the Earth under the climate change scenario. More regions in the Arctic are becoming ice-free oceans in the melting season or through the whole year. Therefore, ocean wind and wave, as the two most important parameters in the air–sea interface, are drawing significant attention to the Arctic Ocean. Scatterometer and radar altimeter are the two traditional remote sensing instruments for ocean wind and wave observations, while the former is limited by coarse spatial resolution and the latter has small spatial coverage. Wind and wave data in high spatial resolution and wide coverage by synthetic aperture radar (SAR) are currently lacking in the Arctic Ocean. We developed an ocean wind and wave dataset by Sentinel-1 SAR in the pan-Arctic Ocean (above 60°N), covering January 2017 to May 2021. By comparing with sea surface wind speed data of scatterometer, the SAR-retrieved wind data achieve an accuracy of 1.23 m/s, in terms of root mean square error (RMSE). Compared with significant wave height data of radar altimeter, the SAR retrievals have an RMSE of 0.66 m. The data records are in the standard NetCDF-4 format. The dataset is publicly available at: http://www.dx.doi.org/10.11922/sciencedb.00834.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
星载SAR泛北冰洋风浪数据
在气候变化情景下,北极是地球上变化最显著的地区之一。北极越来越多的地区在融化季节或全年都成为无冰的海洋。因此,海风和海浪作为海气界面中最重要的两个参数,引起了人们对北冰洋的极大关注。散射计和雷达高度计是海洋风浪观测的两种传统遥感仪器,前者空间分辨率较粗,后者空间覆盖范围较小。目前,北冰洋地区缺乏高空间分辨率、大覆盖范围的合成孔径雷达(SAR)风浪资料。我们利用Sentinel-1 SAR在泛北冰洋(60°N以上)开发了2017年1月至2021年5月的海洋风浪数据集。通过与散射计海面风速数据的比较,sar反演风速数据的均方根误差(RMSE)精度为1.23 m/s。与雷达高度计的显著波高数据相比,SAR反演的均方根误差为0.66 m。数据记录采用标准NetCDF-4格式。该数据集可在http://www.dx.doi.org/10.11922/sciencedb.00834公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1