Soft computing in business: exploring current research and outlining future research directions

Surabhi Singh, Shiwangi Singh, A. Koohang, Anuj Sharma, Sanjay Dhir
{"title":"Soft computing in business: exploring current research and outlining future research directions","authors":"Surabhi Singh, Shiwangi Singh, A. Koohang, Anuj Sharma, Sanjay Dhir","doi":"10.1108/imds-02-2023-0126","DOIUrl":null,"url":null,"abstract":"PurposeThe primary aim of this study is to detail the use of soft computing techniques in business and management research. Its objectives are as follows: to conduct a comprehensive scientometric analysis of publications in the field of soft computing, to explore the evolution of keywords, to identify key research themes and latent topics and to map the intellectual structure of soft computing in the business literature.Design/methodology/approachThis research offers a comprehensive overview of the field by synthesising 43 years (1980–2022) of soft computing research from the Scopus database. It employs descriptive analysis, topic modelling (TM) and scientometric analysis.FindingsThis study's co-citation analysis identifies three primary categories of research in the field: the components, the techniques and the benefits of soft computing. Additionally, this study identifies 16 key study themes in the soft computing literature using TM, including decision-making under uncertainty, multi-criteria decision-making (MCDM), the application of deep learning in object detection and fault diagnosis, circular economy and sustainable development and a few others.Practical implicationsThis analysis offers a valuable understanding of soft computing for researchers and industry experts and highlights potential areas for future research.Originality/valueThis study uses scientific mapping and performance indicators to analyse a large corpus of 4,512 articles in the field of soft computing. It makes significant contributions to the intellectual and conceptual framework of soft computing research by providing a comprehensive overview of the literature on soft computing literature covering a period of four decades and identifying significant trends and topics to direct future research.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"7 1","pages":"2079-2127"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-02-2023-0126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThe primary aim of this study is to detail the use of soft computing techniques in business and management research. Its objectives are as follows: to conduct a comprehensive scientometric analysis of publications in the field of soft computing, to explore the evolution of keywords, to identify key research themes and latent topics and to map the intellectual structure of soft computing in the business literature.Design/methodology/approachThis research offers a comprehensive overview of the field by synthesising 43 years (1980–2022) of soft computing research from the Scopus database. It employs descriptive analysis, topic modelling (TM) and scientometric analysis.FindingsThis study's co-citation analysis identifies three primary categories of research in the field: the components, the techniques and the benefits of soft computing. Additionally, this study identifies 16 key study themes in the soft computing literature using TM, including decision-making under uncertainty, multi-criteria decision-making (MCDM), the application of deep learning in object detection and fault diagnosis, circular economy and sustainable development and a few others.Practical implicationsThis analysis offers a valuable understanding of soft computing for researchers and industry experts and highlights potential areas for future research.Originality/valueThis study uses scientific mapping and performance indicators to analyse a large corpus of 4,512 articles in the field of soft computing. It makes significant contributions to the intellectual and conceptual framework of soft computing research by providing a comprehensive overview of the literature on soft computing literature covering a period of four decades and identifying significant trends and topics to direct future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商业中的软计算:探索当前的研究并概述未来的研究方向
目的本研究的主要目的是详细说明软计算技术在商业和管理研究中的应用。其目标如下:对软计算领域的出版物进行全面的科学计量分析,探索关键词的演变,确定关键研究主题和潜在主题,并绘制商业文献中软计算的知识结构。本研究通过综合Scopus数据库中43年(1980-2022)的软计算研究,对该领域进行了全面的概述。它采用了描述性分析、主题建模(TM)和科学计量分析。本研究的共被引分析确定了该领域研究的三个主要类别:组成部分、技术和软计算的好处。此外,本研究还确定了软计算文献中使用TM的16个关键研究主题,包括不确定性下的决策、多准则决策(MCDM)、深度学习在目标检测和故障诊断中的应用、循环经济和可持续发展等。本分析为研究人员和行业专家提供了对软计算的宝贵理解,并突出了未来研究的潜在领域。原创性/价值本研究采用科学映射和绩效指标对软计算领域的4512篇文章的大型语料库进行分析。它对软计算研究的知识和概念框架做出了重大贡献,提供了涵盖四十年的软计算文献的全面概述,并确定了指导未来研究的重要趋势和主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big data analytics capability in building supply chain resilience: the moderating effect of innovation-focused complementary assets Effects of intrinsic and extrinsic cues on customer behavior in live streaming: evidence from an eye-tracking experiment How doctor image features engage health science short video viewers? Investigating the age and gender bias The impact of enterprise social media usage on employee creativity: a self-regulation perspective Implementation of information and communication technologies in fruit and vegetable supply chain: a systematic literature review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1