Computer assisted analysis of electromyographic data in diagnosis of low back pain

J. Graham, A. Espinosa
{"title":"Computer assisted analysis of electromyographic data in diagnosis of low back pain","authors":"J. Graham, A. Espinosa","doi":"10.1109/ICSMC.1989.71475","DOIUrl":null,"url":null,"abstract":"A computerized system is presented to provide expert assistance to a physician in the evaluation of electromyographic findings in the clinical diagnosis of compressive radiculopathies. The system uses an object-oriented, frame-based representation of the nerve-root and muscular structure of the lower back and leg, and uses a rule-based reasoning system to interpret electromyographic findings and relate them to potential pathologies in the nerve roots in the lower spinal column. A novel feature of this research was the development of a hybrid system of Bayesian regulated belief functions and symbolic endorsements for the resolution of uncertainty in the clinical observations. This hybrid system provided quantitative estimates of the nerve pathologies. while simultaneously providing the physician with qualitative information regarding the interrelations of the clinical findings and the diagnosis.<<ETX>>","PeriodicalId":72691,"journal":{"name":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","volume":"6 1","pages":"1118-1123 vol.3"},"PeriodicalIF":0.0000,"publicationDate":"1989-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. IEEE International Conference on Systems, Man, and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMC.1989.71475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A computerized system is presented to provide expert assistance to a physician in the evaluation of electromyographic findings in the clinical diagnosis of compressive radiculopathies. The system uses an object-oriented, frame-based representation of the nerve-root and muscular structure of the lower back and leg, and uses a rule-based reasoning system to interpret electromyographic findings and relate them to potential pathologies in the nerve roots in the lower spinal column. A novel feature of this research was the development of a hybrid system of Bayesian regulated belief functions and symbolic endorsements for the resolution of uncertainty in the clinical observations. This hybrid system provided quantitative estimates of the nerve pathologies. while simultaneously providing the physician with qualitative information regarding the interrelations of the clinical findings and the diagnosis.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
腰痛诊断中肌电图数据的计算机辅助分析
一个计算机系统提出,以提供专家协助,以评估肌电图的发现,在压缩神经根病的临床诊断医师。该系统使用面向对象的框架表示下背部和腿部的神经根和肌肉结构,并使用基于规则的推理系统来解释肌电图结果,并将其与下脊柱神经根的潜在病理联系起来。本研究的一个新特点是开发了贝叶斯调节信念函数和符号背书的混合系统,用于解决临床观察中的不确定性。这种混合系统提供了神经病理的定量估计。同时为医生提供有关临床表现和诊断之间相互关系的定性信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bioelectronic Zeitgebers: targeted neuromodulation to re-establish circadian rhythms. MorpheusNet: Resource efficient sleep stage classifier for embedded on-line systems. LoST: A Mental Health Dataset of Low Self-esteem in Reddit Posts. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication. Pattern Recognition in Vital Signs Using Spectrograms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1