Effect of Precipitates on Plastic Deformation Behavior of High Entropy Alloy Al0.3CoCrFeNi Under High Strain Rate Loading

IF 1.5 4区 材料科学 Q3 ENGINEERING, MECHANICAL Journal of Engineering Materials and Technology-transactions of The Asme Pub Date : 2021-04-01 DOI:10.1115/1.4048607
P. Das, Vishal Kumar, Prasenjit Khanikar
{"title":"Effect of Precipitates on Plastic Deformation Behavior of High Entropy Alloy Al0.3CoCrFeNi Under High Strain Rate Loading","authors":"P. Das, Vishal Kumar, Prasenjit Khanikar","doi":"10.1115/1.4048607","DOIUrl":null,"url":null,"abstract":"\n High entropy alloys (HEAs) are primarily known for their high strength and high thermal stability. These alloys have recently been studied for high strain rate applications as well. HEAs have been observed to exhibit different properties when subjected to different strain rates. Very few published results on HEAs are available for high strain rate loading conditions. In addition, modeling and simulation work of microstructural details, such as grain boundary and precipitates of HEAs have not yet been investigated. However, at an atomistic length scale, molecular dynamics simulation works of HEAs have already been published. In this study, a detailed microstructural analysis of plastic deformation of the material under high strain rate loading has been performed using dislocation density based crystal plasticity finite element modeling. The primary objective is, therefore, to assess the strengthening effects due to precipitates on a particular high entropy alloy Al0.3CoCrFeNi with ultrafine grains having randomly distributed NiAl precipitates.","PeriodicalId":15700,"journal":{"name":"Journal of Engineering Materials and Technology-transactions of The Asme","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Materials and Technology-transactions of The Asme","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1115/1.4048607","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

High entropy alloys (HEAs) are primarily known for their high strength and high thermal stability. These alloys have recently been studied for high strain rate applications as well. HEAs have been observed to exhibit different properties when subjected to different strain rates. Very few published results on HEAs are available for high strain rate loading conditions. In addition, modeling and simulation work of microstructural details, such as grain boundary and precipitates of HEAs have not yet been investigated. However, at an atomistic length scale, molecular dynamics simulation works of HEAs have already been published. In this study, a detailed microstructural analysis of plastic deformation of the material under high strain rate loading has been performed using dislocation density based crystal plasticity finite element modeling. The primary objective is, therefore, to assess the strengthening effects due to precipitates on a particular high entropy alloy Al0.3CoCrFeNi with ultrafine grains having randomly distributed NiAl precipitates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
析出相对高熵合金Al0.3CoCrFeNi高应变率加载塑性变形行为的影响
高熵合金(HEAs)主要以其高强度和高热稳定性而闻名。这些合金最近也被研究用于高应变速率的应用。HEAs在不同的应变速率下表现出不同的性能。很少有关于HEAs的公开结果可用于高应变率加载条件。此外,HEAs的晶界和析出相等微观组织细节的建模和模拟工作尚未深入研究。然而,在原子长度尺度上,HEAs的分子动力学模拟工作已经发表。在本研究中,使用基于位错密度的晶体塑性有限元模型对材料在高应变率载荷下的塑性变形进行了详细的微观结构分析。因此,本研究的主要目的是评估一种具有随机分布NiAl析出的超细晶粒的高熵合金Al0.3CoCrFeNi的强化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
30
审稿时长
4.5 months
期刊介绍: Multiscale characterization, modeling, and experiments; High-temperature creep, fatigue, and fracture; Elastic-plastic behavior; Environmental effects on material response, constitutive relations, materials processing, and microstructure mechanical property relationships
期刊最新文献
Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr Influence of Multiple Modifications on the Fatigue Behavior of Bitumen and Asphalt Mixtures High Temperature Tensile and Compressive Behaviors of Nanostructured Polycrystalline AlCoCrFeNi High Entropy Alloy: A Molecular Dynamics Study Simulation of Pitting Corrosion Under Stress Based on Cellular Automata and Finite Element Method Corrosion Behavior of 20G Steel in Saline (Na2SO4) Circumstances at High Temperature/Pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1