Lane Detection Algorithm Based on Road Structure and Extended Kalman Filter

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2020-04-01 DOI:10.4018/ijdcf.2020040101
Jinsheng Xiao, Wenxin Xiong, Yuan Yao, Liang Li, R. Klette
{"title":"Lane Detection Algorithm Based on Road Structure and Extended Kalman Filter","authors":"Jinsheng Xiao, Wenxin Xiong, Yuan Yao, Liang Li, R. Klette","doi":"10.4018/ijdcf.2020040101","DOIUrl":null,"url":null,"abstract":"Lane detection still demonstrates low accuracy and missing robustness when recorded markings are interrupted by strong light or shadows or missing marking. This article proposes a new algorithm using a model of road structure and an extended Kalman filter. The region of interest is set according to the vanishing point. First, an edge-detection operator is used to scan horizontal pixels and calculate edge-strength values. The corresponding straight line is detected by line parameters voted by edge points. From the edge points and lane mark candidates extracted above, and other constraints, these points are treated as the potential lane boundary. Finally, the lane parameters are estimated using the coordinates of the lane boundary points. They are updated by an extended Kalman filter to ensure the stability and robustness. Results indicate that the proposed algorithm is robust for challenging road scenes with low computational complexity.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"20 5 1","pages":"1-20"},"PeriodicalIF":0.6000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 4

Abstract

Lane detection still demonstrates low accuracy and missing robustness when recorded markings are interrupted by strong light or shadows or missing marking. This article proposes a new algorithm using a model of road structure and an extended Kalman filter. The region of interest is set according to the vanishing point. First, an edge-detection operator is used to scan horizontal pixels and calculate edge-strength values. The corresponding straight line is detected by line parameters voted by edge points. From the edge points and lane mark candidates extracted above, and other constraints, these points are treated as the potential lane boundary. Finally, the lane parameters are estimated using the coordinates of the lane boundary points. They are updated by an extended Kalman filter to ensure the stability and robustness. Results indicate that the proposed algorithm is robust for challenging road scenes with low computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于道路结构和扩展卡尔曼滤波的车道检测算法
当记录的标记被强光或阴影或缺失标记打断时,车道检测仍然表现出较低的准确性和缺乏鲁棒性。本文提出了一种利用道路结构模型和扩展卡尔曼滤波的新算法。根据消失点设置感兴趣的区域。首先,使用边缘检测算子扫描水平像素并计算边缘强度值。对应的直线由边缘点投票的线参数检测。从上述提取的边缘点和车道标记候选点以及其他约束条件中,将这些点作为潜在的车道边界。最后,利用车道边界点的坐标估计车道参数。通过扩展卡尔曼滤波对其进行更新,保证了系统的稳定性和鲁棒性。结果表明,该算法对于具有较低计算复杂度的挑战性道路场景具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning UAV Edge Caching Content Recommendation Algorithm Based on Graph Neural Network Task Offloading in Cloud-Edge Environments MD-S3C3 A Crime Scene Reconstruction for Digital Forensic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1