Multicast Beamforming Using Semidefinite Relaxation and Bounded Perturbation Resilience

Jochen Fink, R. Cavalcante, S. Stańczak
{"title":"Multicast Beamforming Using Semidefinite Relaxation and Bounded Perturbation Resilience","authors":"Jochen Fink, R. Cavalcante, S. Stańczak","doi":"10.1109/ICASSP.2019.8682325","DOIUrl":null,"url":null,"abstract":"Semidefinite relaxation followed by randomization is a well-known approach for approximating a solution to the NP-hard max-min fair multicast beamforming problem. While providing a good approximation to the optimal solution, this approach commonly involves the use of computationally demanding interior point methods. In this study, we propose a solution based on superiorization of bounded perturbation resilient iterative operators that scales to systems with a large number of antennas. We show that this method outperforms the randomization techniques in many cases, while using only computationally simple operations.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"75 1","pages":"4749-4753"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Semidefinite relaxation followed by randomization is a well-known approach for approximating a solution to the NP-hard max-min fair multicast beamforming problem. While providing a good approximation to the optimal solution, this approach commonly involves the use of computationally demanding interior point methods. In this study, we propose a solution based on superiorization of bounded perturbation resilient iterative operators that scales to systems with a large number of antennas. We show that this method outperforms the randomization techniques in many cases, while using only computationally simple operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于半定松弛和有界扰动弹性的组播波束形成
随机化后的半定松弛是解决NP-hard最大最小公平组播波束形成问题的一种众所周知的方法。虽然提供了对最优解的良好近似,但这种方法通常涉及使用计算要求很高的内点法。在这项研究中,我们提出了一种基于有界微扰弹性迭代算子的优越化解决方案,该方案适用于具有大量天线的系统。我们表明,这种方法在许多情况下优于随机化技术,而只使用计算简单的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1