Rahul Biswas, A. Bardhan, P. Samui, B. Rai, Subrata Nayak, D. J. Armaghani
{"title":"Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete","authors":"Rahul Biswas, A. Bardhan, P. Samui, B. Rai, Subrata Nayak, D. J. Armaghani","doi":"10.12989/CAC.2021.28.2.221","DOIUrl":null,"url":null,"abstract":"In the recent year, extensive researches have been done on fly ash-based geopolymer concrete for its similar properties like Portland cement as well as its environmental sustainability. However, it is difficult to provide a consistent method for geopolymer mix design because of the complexity and uncertainty of its design parameters, such as the alkaline solution concentration, mole ratio, and liquid to fly ash mass ratio. These mix-design parameters, along with the curing time and temperature ominously affect the most significant properties of the geopolymer concrete, i.e., compressive strength. To overcome these difficulties, the paper aims to provide a simple mix-design tool using artificial intelligence (AI) models. Three well-established and efficient AI techniques namely, genetic programming, relevance vector machine, and Gaussian process regression are used. Based on the performance of the developed models, it is understood that all the models have the capability \nto deliver higher prediction accuracies in the range of 0.9362 to 0.9905 (based on R2 value). Among the employed models, RVM outperformed the other model with R2=0.9905 and RMSE=0.0218. Theodore, the developed RVM model is very potential to be a new alternative to assist engineers to save time and expenditure on account of the trial-and-error process in finding the correct design mix proportions.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":"116 1","pages":"221"},"PeriodicalIF":2.9000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2021.28.2.221","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 24
Abstract
In the recent year, extensive researches have been done on fly ash-based geopolymer concrete for its similar properties like Portland cement as well as its environmental sustainability. However, it is difficult to provide a consistent method for geopolymer mix design because of the complexity and uncertainty of its design parameters, such as the alkaline solution concentration, mole ratio, and liquid to fly ash mass ratio. These mix-design parameters, along with the curing time and temperature ominously affect the most significant properties of the geopolymer concrete, i.e., compressive strength. To overcome these difficulties, the paper aims to provide a simple mix-design tool using artificial intelligence (AI) models. Three well-established and efficient AI techniques namely, genetic programming, relevance vector machine, and Gaussian process regression are used. Based on the performance of the developed models, it is understood that all the models have the capability
to deliver higher prediction accuracies in the range of 0.9362 to 0.9905 (based on R2 value). Among the employed models, RVM outperformed the other model with R2=0.9905 and RMSE=0.0218. Theodore, the developed RVM model is very potential to be a new alternative to assist engineers to save time and expenditure on account of the trial-and-error process in finding the correct design mix proportions.
期刊介绍:
Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal.
The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including
plasticity
fracture mechanics
creep
thermo-mechanics
dynamic effects
reliability and safety concepts
automated design procedures
stochastic mechanics
performance under extreme conditions.