{"title":"Flexible brain: a domain-model based bayesian network for classification","authors":"Guanghao Jin, Qingzeng Song","doi":"10.1080/0952813X.2021.1949753","DOIUrl":null,"url":null,"abstract":"ABSTRACT Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"34 1","pages":"1011 - 1028"},"PeriodicalIF":1.7000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1949753","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Currently, deep learning methods have been widely applied to many fields like classification. Generally, these methods use the technology like transferring to make a model work well on different domains like building a strong brain. Existing transferring methods include complex model reconstruction or high-quality retraining on the new domains that makes it hard to implement or ensure high accuracy. This paper introduces a domain-model-based Bayesian network and related solutions to solve this problem. Our solutions make it easier to add new domains while ensure high accuracy like a flexible brain. The experimental results show that our solutions can ensure higher accuracy than the single model one. Furthermore, we also evaluated the network in transferring case and the result shows that the accuracy of our solutions is higher than the single transferred model.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving