Capturing spatial variability in the regional Ground Motion Model of Groningen, the Netherlands

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2022-08-17 DOI:10.1017/njg.2022.13
P. Kruiver, M. Pefkos, A. Rodriguez-Marek, X. Campman, Kira Ooms-Asshoff, M. Chmiel, A. Lavoué, P. Stafford, J. van Elk
{"title":"Capturing spatial variability in the regional Ground Motion Model of Groningen, the Netherlands","authors":"P. Kruiver, M. Pefkos, A. Rodriguez-Marek, X. Campman, Kira Ooms-Asshoff, M. Chmiel, A. Lavoué, P. Stafford, J. van Elk","doi":"10.1017/njg.2022.13","DOIUrl":null,"url":null,"abstract":"Abstract Long-term exploration of the Groningen gas field in the Netherlands led to induced seismicity. Over the past nine years, an increasingly sophisticated Ground Motion Model (GMM) has been developed to assess the site response and the related seismic hazard. The GMM output strongly depends on the shear-wave velocity (V S ), among other input parameters. To date, V S model data from soil profiles (Kruiver et al., Bulletin of Earthquake Engineering, 15(9): 3555–3580, 2017; Netherlands Journal of Geosciences, 96(5): s215–s233, 2017) have been used in the GMM. Recently, new V S profiles above the Groningen gas field were constructed using ambient noise surface wave tomography. These so-called field V S data, even though spatially limited, provide an independent source of V S to check whether the level of spatial variability in the GMM is sufficient. Here, we compared amplification factors (AF) for two sites (Borgsweer and Loppersum) calculated with the model V S and the field V S (Chmiel et al., Geophysical Journal International, 218(3), 1781–1795, 2019 and new data). Our AF results over periods relevant for seismic risk (0.01–1.0 s) show that model and field V S profiles agree within the uncertainty range generally accepted in geo-engineering. In addition, we compared modelled spectral accelerations using either field V S or model V S in Loppersum to the recordings of an earthquake that occurred during the monitoring period (ML 3.4 Zeerijp on 8 January 2018). The modelled spectral accelerations at the surface for both field V S and model V S are coherent with the earthquake data for the resonance periods representative of most buildings in Groningen (T = 0.2 and 0.3 s). These results confirm that the currently used V S model in the GMM captures spatial variability in the site response and represents reliable input for the site response calculations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/njg.2022.13","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Long-term exploration of the Groningen gas field in the Netherlands led to induced seismicity. Over the past nine years, an increasingly sophisticated Ground Motion Model (GMM) has been developed to assess the site response and the related seismic hazard. The GMM output strongly depends on the shear-wave velocity (V S ), among other input parameters. To date, V S model data from soil profiles (Kruiver et al., Bulletin of Earthquake Engineering, 15(9): 3555–3580, 2017; Netherlands Journal of Geosciences, 96(5): s215–s233, 2017) have been used in the GMM. Recently, new V S profiles above the Groningen gas field were constructed using ambient noise surface wave tomography. These so-called field V S data, even though spatially limited, provide an independent source of V S to check whether the level of spatial variability in the GMM is sufficient. Here, we compared amplification factors (AF) for two sites (Borgsweer and Loppersum) calculated with the model V S and the field V S (Chmiel et al., Geophysical Journal International, 218(3), 1781–1795, 2019 and new data). Our AF results over periods relevant for seismic risk (0.01–1.0 s) show that model and field V S profiles agree within the uncertainty range generally accepted in geo-engineering. In addition, we compared modelled spectral accelerations using either field V S or model V S in Loppersum to the recordings of an earthquake that occurred during the monitoring period (ML 3.4 Zeerijp on 8 January 2018). The modelled spectral accelerations at the surface for both field V S and model V S are coherent with the earthquake data for the resonance periods representative of most buildings in Groningen (T = 0.2 and 0.3 s). These results confirm that the currently used V S model in the GMM captures spatial variability in the site response and represents reliable input for the site response calculations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在荷兰格罗宁根地区地面运动模型中捕捉空间变化
荷兰Groningen气田的长期勘探导致诱发地震活动。在过去的九年中,一种越来越复杂的地震动模型(GMM)被开发出来,用于评估场地反应和相关的地震危险。在其他输入参数中,GMM输出强烈依赖于横波速度(V S)。迄今为止,基于土壤剖面的V S模型数据[Kruiver等,地震工程通报,15(9):3555-3580,2017;地球科学学报,96(5):515 - 523,2017)。最近,利用环境噪声表面波层析成像技术在格罗宁根气田上方建立了新的V - S剖面。这些所谓的场V S数据,即使在空间上有限,也提供了一个独立的V S来源,以检验GMM的空间变异水平是否足够。在这里,我们比较了用模型V S和场V S计算的两个地点(Borgsweer和Loppersum)的放大因子(AF) (Chmiel等人,Geophysical Journal International, 218(3), 1781-1795, 2019和新数据)。我们在与地震风险相关的周期内(0.01-1.0 s)的AF结果表明,模型和现场V - s剖面在地球工程中普遍接受的不确定性范围内是一致的。此外,我们将Loppersum使用V S场或V S模型模拟的频谱加速度与监测期间发生的地震记录(2018年1月8日ML 3.4 Zeerijp)进行了比较。V S场和V S模型的地表谱加速度模型与格罗宁根大多数建筑物的共振周期(T = 0.2和0.3 S)的地震数据一致。这些结果证实,GMM中目前使用的V S模型捕获了场地响应的空间变异性,并为场地响应计算提供了可靠的输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1