A new variable shape parameter strategy for RBF approximation using neural networks

F. Mojarrad, M. H. Veiga, J. Hesthaven, Philipp Öffner
{"title":"A new variable shape parameter strategy for RBF approximation using neural networks","authors":"F. Mojarrad, M. H. Veiga, J. Hesthaven, Philipp Öffner","doi":"10.48550/arXiv.2210.16945","DOIUrl":null,"url":null,"abstract":"The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between ill-condition of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":"2 1","pages":"151-168"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.16945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The choice of the shape parameter highly effects the behaviour of radial basis function (RBF) approximations, as it needs to be selected to balance between ill-condition of the interpolation matrix and high accuracy. In this paper, we demonstrate how to use neural networks to determine the shape parameters in RBFs. In particular, we construct a multilayer perceptron trained using an unsupervised learning strategy, and use it to predict shape parameters for inverse multiquadric and Gaussian kernels. We test the neural network approach in RBF interpolation tasks and in a RBF-finite difference method in one and two-space dimensions, demonstrating promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于神经网络的变形状参数RBF逼近策略
形状参数的选择在很大程度上影响径向基函数(RBF)逼近的性能,因为它需要在插值矩阵的病态性和高精度之间取得平衡。在本文中,我们演示了如何使用神经网络来确定rbf的形状参数。特别是,我们构建了一个使用无监督学习策略训练的多层感知器,并使用它来预测逆多重二次核和高斯核的形状参数。我们在RBF插值任务中测试了神经网络方法,并在一维和二维空间中测试了RBF有限差分方法,展示了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meshfree methods for nonlinear equilibrium radiation diffusion equation with jump coefficient Effects of prefilmer edge configuration on primary liquid film breakup: A lattice Boltzmann study A family of edge-centered finite volume schemes for heterogeneous and anisotropic diffusion problems on unstructured meshes A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem Second-order linear adaptive time-stepping schemes for the fractional Allen-Cahn equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1