R. K., Praveen Tammana, Pravein G. Kannan, Priyanka Naik
{"title":"A Case For Cross-Domain Observability to Debug Performance Issues in Microservices","authors":"R. K., Praveen Tammana, Pravein G. Kannan, Priyanka Naik","doi":"10.1109/CLOUD55607.2022.00045","DOIUrl":null,"url":null,"abstract":"Many applications deployed in the cloud are usually refactored into small components called microservices that are deployed as containers in a Kubernetes environment. Such applications are deployed on a cluster of physical servers which are connected via the datacenter network.In such deployments, resources such as compute, memory, and network, are shared and hence some microservices (culprits) can misbehave and consume more resources. This interference among applications hosted on the same node leads to performance issues (e.g., high latency, packet loss) in the microservices (victims) followed by a delayed or low-quality response. Given the highly distributed and transient nature of the workloads, it’s extremely challenging to debug performance issues. Especially, given the nature of existing monitoring tools, which collect traces and analyze them at individual points (network, host, etc) in a disaggregated manner.In this paper, we argue toward a case for a cross-domain (network & host) monitoring and debugging framework which could provide the end-to-end observability to debug performance issues of applications and pin-point the root-cause whether it is on the sender-host, receiver-host or the network. We present the design and provide preliminary implementation details using eBPF (extended Berkeley Packet Filter) to elucidate the feasibility of the system.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"1 1","pages":"244-246"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2
Abstract
Many applications deployed in the cloud are usually refactored into small components called microservices that are deployed as containers in a Kubernetes environment. Such applications are deployed on a cluster of physical servers which are connected via the datacenter network.In such deployments, resources such as compute, memory, and network, are shared and hence some microservices (culprits) can misbehave and consume more resources. This interference among applications hosted on the same node leads to performance issues (e.g., high latency, packet loss) in the microservices (victims) followed by a delayed or low-quality response. Given the highly distributed and transient nature of the workloads, it’s extremely challenging to debug performance issues. Especially, given the nature of existing monitoring tools, which collect traces and analyze them at individual points (network, host, etc) in a disaggregated manner.In this paper, we argue toward a case for a cross-domain (network & host) monitoring and debugging framework which could provide the end-to-end observability to debug performance issues of applications and pin-point the root-cause whether it is on the sender-host, receiver-host or the network. We present the design and provide preliminary implementation details using eBPF (extended Berkeley Packet Filter) to elucidate the feasibility of the system.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)