{"title":"PP-coir Composites (PPCC): Fabrication and Study of Flexural Properties","authors":"Md Nazrul Islam, M. A. Gafur","doi":"10.11648/J.MC.20190704.15","DOIUrl":null,"url":null,"abstract":"Today we are more concern about the environment. Synthetic polymers are the most responsible pollutant for environmental pollution. Good replacing agents for the synthetic polymers are the natural polymer. That is why the uses of natural fiber reinforced composites are increasing day-by-day. In this research natural polymer coir fiber was used as the reinforcing agent with the synthetic polymer polypropylene. PP-coir composites were fabricated using a simple hot press molding method. The prepared composites were characterized by the density, tensile, and flexural properties. The effect of fiber addition on some physical and mechanical properties was evaluated. The density increases with the increase of fiber addition. The tensile strength of fabricated product increases with the increase of fiber addition up to 10% (wt.) and then decreases continuously. The elongation of fabricated product decreases with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of PP- coir composites (PPCC). It revealed that the introduction of short coir fiber led to a slightly improved thermo oxidative stability of PP- Coir composites. The flexural strain of fabricated product decreases continuously with the increase of fiber addition. But here untreated fiber reinforced composites show higher strain than that of treated fiber reinforced composites.","PeriodicalId":18605,"journal":{"name":"Modern Chemistry & Applications","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Chemistry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.MC.20190704.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Today we are more concern about the environment. Synthetic polymers are the most responsible pollutant for environmental pollution. Good replacing agents for the synthetic polymers are the natural polymer. That is why the uses of natural fiber reinforced composites are increasing day-by-day. In this research natural polymer coir fiber was used as the reinforcing agent with the synthetic polymer polypropylene. PP-coir composites were fabricated using a simple hot press molding method. The prepared composites were characterized by the density, tensile, and flexural properties. The effect of fiber addition on some physical and mechanical properties was evaluated. The density increases with the increase of fiber addition. The tensile strength of fabricated product increases with the increase of fiber addition up to 10% (wt.) and then decreases continuously. The elongation of fabricated product decreases with the increase of fiber addition continuously. The changes in the mechanical properties were broadly related to the accompanying interfacial bonding of PP- coir composites (PPCC). It revealed that the introduction of short coir fiber led to a slightly improved thermo oxidative stability of PP- Coir composites. The flexural strain of fabricated product decreases continuously with the increase of fiber addition. But here untreated fiber reinforced composites show higher strain than that of treated fiber reinforced composites.