Neural network analysis of protein tertiary structure

George L. Wilcox , Marius Poliac , Michael N. Liebman
{"title":"Neural network analysis of protein tertiary structure","authors":"George L. Wilcox ,&nbsp;Marius Poliac ,&nbsp;Michael N. Liebman","doi":"10.1016/0898-5529(90)90052-A","DOIUrl":null,"url":null,"abstract":"<div><p>We describe a large scale application of a back-propagation neural network to the analysis, classification and prediction of protein secondary and tertiary structure from sequence information alone. A back-propagation network called BigNet has been implemented along with a Network Description Language (NDL) on the 512 MWord Cray 2 at the Minnesota Supercomputer Center. The proof-of-concept experiments described here used a small, heterologous training set of small protein structures (15 proteins each with less than 133 residues) from the Brookhaven Protein Data Bank (PDB). Simulations with one hidden layer and one half to ten million connections execute at three to five million connection updates per second in full back-propagation learning mode and routinely converge to solutions where input of hydrophobicity-coded sequence yields output distance matrices with 0.3 to 1.5% RMS deviation from actual distance matrices. Although the training set used is too small to expect useful generalization, some evidence of generalization was evident in similarity of learning progress of homologous pairs within the training set and in production of novel distance matrix outputs upon presentation with novel input sequences. The discussion addresses limitations in the current implementation, plans for software improvements, and characteristics of future training sets.</p></div>","PeriodicalId":101214,"journal":{"name":"Tetrahedron Computer Methodology","volume":"3 3","pages":"Pages 191-204, IN4, 205-211"},"PeriodicalIF":0.0000,"publicationDate":"1990-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0898-5529(90)90052-A","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tetrahedron Computer Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/089855299090052A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We describe a large scale application of a back-propagation neural network to the analysis, classification and prediction of protein secondary and tertiary structure from sequence information alone. A back-propagation network called BigNet has been implemented along with a Network Description Language (NDL) on the 512 MWord Cray 2 at the Minnesota Supercomputer Center. The proof-of-concept experiments described here used a small, heterologous training set of small protein structures (15 proteins each with less than 133 residues) from the Brookhaven Protein Data Bank (PDB). Simulations with one hidden layer and one half to ten million connections execute at three to five million connection updates per second in full back-propagation learning mode and routinely converge to solutions where input of hydrophobicity-coded sequence yields output distance matrices with 0.3 to 1.5% RMS deviation from actual distance matrices. Although the training set used is too small to expect useful generalization, some evidence of generalization was evident in similarity of learning progress of homologous pairs within the training set and in production of novel distance matrix outputs upon presentation with novel input sequences. The discussion addresses limitations in the current implementation, plans for software improvements, and characteristics of future training sets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质三级结构的神经网络分析
我们描述了反向传播神经网络在仅从序列信息分析、分类和预测蛋白质二级和三级结构中的大规模应用。在明尼苏达超级计算机中心的512 MWord Cray 2上,一个名为BigNet的反向传播网络已经与网络描述语言(NDL)一起实现。这里描述的概念验证实验使用了来自布鲁克海文蛋白质数据库(PDB)的小蛋白质结构(15个蛋白质,每个蛋白质少于133个残基)的小异种训练集。在完整的反向传播学习模式下,一个隐藏层和50万到1000万个连接的模拟以每秒300万到500万次连接更新的速度执行,并且通常会收敛到解决方案,其中输入的疏水性编码序列产生的输出距离矩阵与实际距离矩阵的RMS偏差为0.3到1.5%。虽然所使用的训练集太小,无法期望有用的泛化,但在训练集中同源对的学习过程的相似性以及在使用新输入序列时产生新的距离矩阵输出中,一些泛化的证据是明显的。讨论了当前实现中的局限性、软件改进的计划以及未来训练集的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Contributors to this issue Introduction Contributors to this issue Errata Contributors to this issue
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1