Hyperspectral Oceanic Remote Sensing With Adjacency Effects: From Spectral-Variability-Based Modeling To Performance Of Associated Blind Unmixing Methods
Y. Deville, Audrey Minghelli, X. Briottet, V. Serfaty, S. Brezini, Fatima Zohra Benhalouche, M. S. Karoui, M. Guillaume, X. Lenot, B. Lafrance, M. Chami, S. Jay
{"title":"Hyperspectral Oceanic Remote Sensing With Adjacency Effects: From Spectral-Variability-Based Modeling To Performance Of Associated Blind Unmixing Methods","authors":"Y. Deville, Audrey Minghelli, X. Briottet, V. Serfaty, S. Brezini, Fatima Zohra Benhalouche, M. S. Karoui, M. Guillaume, X. Lenot, B. Lafrance, M. Chami, S. Jay","doi":"10.1109/IGARSS.2019.8898430","DOIUrl":null,"url":null,"abstract":"In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"2014 1","pages":"282-285"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In a very recent paper, we introduced (i) a specific hyper-spectral mixing model for the sea bottom, based on a detailed physical analysis which includes the adjacency effect, and (ii) an associated unmixing method, which is not blind in the sense that it requires a prior estimation of various parameters of that mixing model. We here proceed much further, by first analytically showing that this model can be seen as a specific member of the general class of mixing models involving spectral variability. Therefore, we then process such data with the IP-NMF and UP-NMF blind unmixing methods that we recently proposed in other works to handle spectral variability. Such a variability especially occurs when sea depth significantly varies over the considered scene, and we show that IP-NMF and UP-NMF then yield significantly better pure spectra estimation than a classical method from the literature which was not designed to handle such a variability.