A Binary Search Algorithm for Correlation Study of Decay Centrality vs. Degree Centrality and Closeness Centrality

N. Meghanathan
{"title":"A Binary Search Algorithm for Correlation Study of Decay Centrality vs. Degree Centrality and Closeness Centrality","authors":"N. Meghanathan","doi":"10.5539/cis.v10n2p52","DOIUrl":null,"url":null,"abstract":"Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.","PeriodicalId":14676,"journal":{"name":"J. Chem. Inf. Comput. Sci.","volume":"1 1","pages":"52-75"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Chem. Inf. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/cis.v10n2p52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ . We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ -search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ - space r ) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r . We show the use of the binary search algorithm to find the maximum Threshold PCC value r max (such that δ - space r max is positive) for a real-world network. We observe a very strong correlation between r max and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower r max value and vice-versa.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
衰减中心性与度中心性和接近中心性的二叉搜索算法
对48个真实网络的衰变中心性(DEC)与度中心性(DEG)和接近中心性(CLC)的相关性研究(使用Pearson相关系数,PCC)表明了一个有趣的趋势:PCC(DEC, DEG)随衰变参数δ (0 < δ < 1)的增大而减小,PCC(DEC, CLC)随δ的减小而减小。我们利用这种PCC值单调减少的趋势(从δ搜索空间的两侧),并提出了一种二分搜索算法(给定PCC的阈值r),该算法可用于识别真实世界网络的δ值(如果存在,我们说存在正δ空间r),使得PCC(DEC, DEG)≥r以及PCC(DEC, CLC)≥r。我们展示了使用二进制搜索算法来查找真实网络的最大阈值PCC值r max(使得δ空间r max为正)。我们观察到r最大值与PCC(DEG, CLC)之间存在很强的相关性,并且观察到现实世界中节点度变化较大的网络更有可能具有较低的r最大值,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image, Volume 41, Issue 13 Cover Image, Volume 41, Issue 15 Cover Image, Volume 41, Issue 14 Cover Image, Volume 41, Issue 11 Cover Image, Volume 41, Issue 9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1