Armando Barbosa, I. Bittencourt, S. Siqueira, Diego Dermeval, Nicholas J. T. Cruz
{"title":"A Context-Independent Ontological Linked Data Alignment Approach to Instance Matching","authors":"Armando Barbosa, I. Bittencourt, S. Siqueira, Diego Dermeval, Nicholas J. T. Cruz","doi":"10.4018/ijswis.295977","DOIUrl":null,"url":null,"abstract":"Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"16 1","pages":"1-29"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.295977","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Linking data by finding matching instances in different datasets requires considering many characteristics, such as structural heterogeneity, implicit knowledge, and URI (Uniform Resource Identifier)-oriented identification. The authors propose a context-independent approach to align Linked data through an alignment process based on the ontological model’s components and considering data’s multidimensionality. The researchers experimented with the proposed approach against two methods for aligning linked data in two datasets and evaluated precision, recall, and f-measure metrics. The authors also conducted a case study in a real scenario considering a Brazilian publication dataset on computers and education. This study’s results indicate that the proposed approach overcomes the other methods (regarding the precision, recall, and f-measure metrics), requiring less work when changing the dataset domain. This work’s main contributions include enabling real datasets to be semi-automatically linked, presenting an approach capable of calculating resource similarity.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.