{"title":"Influence of Temperature Effects on CPT in Granular Soils by Discrete Element Modeling in 3D","authors":"Yun K Huang, Weichen Sun, Hongyi You, Kai Wu","doi":"10.3390/geotechnics3030034","DOIUrl":null,"url":null,"abstract":"This study employs a 3D discrete element method (DEM) to simulate cone penetration tests (CPTs) in granular soils, taking into account the effect of temperature. A coupled thermal mechanical model is developed to allow for heat transfer and storage in the granular materials. The CPT simulations are conducted on granular samples prepared at various temperatures, with the specific heat and velocity of thermal conductivity being identified as two critical factors that influence sample heating time. Additionally, the thermal expansion coefficient is a crucial parameter that is closely related to the porosity of the sample. As the sample temperature increases, the particles expand, resulting in an increase in cone resistance.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"23 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030034","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a 3D discrete element method (DEM) to simulate cone penetration tests (CPTs) in granular soils, taking into account the effect of temperature. A coupled thermal mechanical model is developed to allow for heat transfer and storage in the granular materials. The CPT simulations are conducted on granular samples prepared at various temperatures, with the specific heat and velocity of thermal conductivity being identified as two critical factors that influence sample heating time. Additionally, the thermal expansion coefficient is a crucial parameter that is closely related to the porosity of the sample. As the sample temperature increases, the particles expand, resulting in an increase in cone resistance.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.