A Low Power, Fully Event-Based Gesture Recognition System

A. Amir, B. Taba, David J. Berg, T. Melano, J. McKinstry, C. D. Nolfo, T. Nayak, Alexander Andreopoulos, Guillaume J. Garreau, Marcela Mendoza, J. Kusnitz, M. DeBole, Steven K. Esser, T. Delbrück, M. Flickner, D. Modha
{"title":"A Low Power, Fully Event-Based Gesture Recognition System","authors":"A. Amir, B. Taba, David J. Berg, T. Melano, J. McKinstry, C. D. Nolfo, T. Nayak, Alexander Andreopoulos, Guillaume J. Garreau, Marcela Mendoza, J. Kusnitz, M. DeBole, Steven K. Esser, T. Delbrück, M. Flickner, D. Modha","doi":"10.1109/CVPR.2017.781","DOIUrl":null,"url":null,"abstract":"We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS). The biologically inspired DVS transmits data only when a pixel detects a change, unlike traditional frame-based cameras which sample every pixel at a fixed frame rate. This sparse, asynchronous data representation lets event-based cameras operate at much lower power than frame-based cameras. However, much of the energy efficiency is lost if, as in previous work, the event stream is interpreted by conventional synchronous processors. Here, for the first time, we process a live DVS event stream using TrueNorth, a natively event-based processor with 1 million spiking neurons. Configured here as a convolutional neural network (CNN), the TrueNorth chip identifies the onset of a gesture with a latency of 105 ms while consuming less than 200 mW. The CNN achieves 96.5% out-of-sample accuracy on a newly collected DVS dataset (DvsGesture) comprising 11 hand gesture categories from 29 subjects under 3 illumination conditions.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"120 1","pages":"7388-7397"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"505","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 505

Abstract

We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS). The biologically inspired DVS transmits data only when a pixel detects a change, unlike traditional frame-based cameras which sample every pixel at a fixed frame rate. This sparse, asynchronous data representation lets event-based cameras operate at much lower power than frame-based cameras. However, much of the energy efficiency is lost if, as in previous work, the event stream is interpreted by conventional synchronous processors. Here, for the first time, we process a live DVS event stream using TrueNorth, a natively event-based processor with 1 million spiking neurons. Configured here as a convolutional neural network (CNN), the TrueNorth chip identifies the onset of a gesture with a latency of 105 ms while consuming less than 200 mW. The CNN achieves 96.5% out-of-sample accuracy on a newly collected DVS dataset (DvsGesture) comprising 11 hand gesture categories from 29 subjects under 3 illumination conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个低功耗,完全基于事件的手势识别系统
我们提出了第一个在基于事件的硬件上实现端到端手势识别系统,使用TrueNorth神经突触处理器从动态视觉传感器(DVS)实时流媒体事件中以低功耗实时识别手势。受生物启发的分布式交换机仅在像素检测到变化时传输数据,而传统的基于帧的相机以固定帧速率对每个像素进行采样。这种稀疏的、异步的数据表示使得基于事件的相机比基于帧的相机功耗低得多。然而,如果像前面的工作一样,事件流是由传统的同步处理器解释的,那么大部分的能源效率就会损失。在这里,我们第一次使用TrueNorth处理实时分布式交换机事件流,TrueNorth是一个具有100万个尖峰神经元的本地基于事件的处理器。TrueNorth芯片在这里配置为卷积神经网络(CNN),可以识别一个手势的开始,延迟为105毫秒,功耗低于200兆瓦。CNN在新收集的分布式交换机数据集(DvsGesture)上实现了96.5%的样本外准确率,该数据集包括29个受试者在3种照明条件下的11个手势类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1