Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting

Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, Jimmy J. Lin
{"title":"Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting","authors":"Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, Jimmy J. Lin","doi":"10.1145/3446426","DOIUrl":null,"url":null,"abstract":"Conversational search plays a vital role in conversational information seeking. As queries in information seeking dialogues are ambiguous for traditional ad hoc information retrieval (IR) systems due to the coreference and omission resolution problems inherent in natural language dialogue, resolving these ambiguities is crucial. In this article, we tackle conversational passage retrieval, an important component of conversational search, by addressing query ambiguities with query reformulation integrated into a multi-stage ad hoc IR system. Specifically, we propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting. For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals. For the latter, we reformulate conversational queries into natural, stand-alone, human-understandable queries with a pretrained sequence-to-sequence model. Detailed analyses of the two CQR methods are provided quantitatively and qualitatively, explaining their advantages, disadvantages, and distinct behaviors. Moreover, to leverage the strengths of both CQR methods, we propose combining their output with reciprocal rank fusion, yielding state-of-the-art retrieval effectiveness, 30% improvement in terms of NDCG@3 compared to the best submission of Text REtrieval Conference (TREC) Conversational Assistant Track (CAsT) 2019.","PeriodicalId":6934,"journal":{"name":"ACM Transactions on Information Systems (TOIS)","volume":"3 1","pages":"1 - 29"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information Systems (TOIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

Abstract

Conversational search plays a vital role in conversational information seeking. As queries in information seeking dialogues are ambiguous for traditional ad hoc information retrieval (IR) systems due to the coreference and omission resolution problems inherent in natural language dialogue, resolving these ambiguities is crucial. In this article, we tackle conversational passage retrieval, an important component of conversational search, by addressing query ambiguities with query reformulation integrated into a multi-stage ad hoc IR system. Specifically, we propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting. For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals. For the latter, we reformulate conversational queries into natural, stand-alone, human-understandable queries with a pretrained sequence-to-sequence model. Detailed analyses of the two CQR methods are provided quantitatively and qualitatively, explaining their advantages, disadvantages, and distinct behaviors. Moreover, to leverage the strengths of both CQR methods, we propose combining their output with reciprocal rank fusion, yielding state-of-the-art retrieval effectiveness, 30% improvement in terms of NDCG@3 compared to the best submission of Text REtrieval Conference (TREC) Conversational Assistant Track (CAsT) 2019.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多阶段会话段落检索:一种融合词重要性估计和神经查询重写的方法
会话搜索在会话信息搜索中起着至关重要的作用。由于自然语言对话中固有的共指和遗漏解决问题,使得传统的信息检索系统在信息搜索对话中查询具有歧义性,因此解决这些歧义性至关重要。在本文中,我们通过将查询重构集成到多阶段临时IR系统中来解决查询歧义,从而解决会话通道检索(会话搜索的一个重要组成部分)。具体而言,我们提出了两种会话查询重构(CQR)方法:(1)项重要性估计和(2)神经查询重写。对于前者,我们使用基于频率的信号从会话上下文中提取的重要术语扩展会话查询。对于后者,我们使用预训练的序列到序列模型将会话查询重新表述为自然的、独立的、人类可理解的查询。对两种CQR方法进行了定量和定性的详细分析,说明了它们的优缺点和不同的行为。此外,为了利用这两种CQR方法的优势,我们建议将它们的输出与互序融合相结合,产生最先进的检索效率,与2019年文本检索会议(TREC)会话助理轨道(CAsT)的最佳提交相比,NDCG@3提高了30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Collaborative Graph Learning for Session-based Recommendation GraphHINGE: Learning Interaction Models of Structured Neighborhood on Heterogeneous Information Network Scalable Representation Learning for Dynamic Heterogeneous Information Networks via Metagraphs Complex-valued Neural Network-based Quantum Language Models eFraudCom: An E-commerce Fraud Detection System via Competitive Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1