Automated Diabetic Retinopathy Grading using Resnet

Doaa K. Elswah, A. Elnakib, Hossam El-Din Moustafa
{"title":"Automated Diabetic Retinopathy Grading using Resnet","authors":"Doaa K. Elswah, A. Elnakib, Hossam El-Din Moustafa","doi":"10.1109/NRSC49500.2020.9235098","DOIUrl":null,"url":null,"abstract":"This paper presents a deep learning framework for the classification of diabetic retinopathy (DR) grades from fundus images. The proposed framework is composed of three stages. First, the fundus image is preprocessed using intensity normalization and augmentation. Second, the pre-processed image is input to a ResNet Convolutional Neural Network (CNN) model in order to extract a compact feature vector for grading. Finally, a classification step is used to detect DR and determine its grade (e.g., mild, moderate, severe, or Proliferative Diabetic Retinopathy (PDR)). The proposed framework is trained using the challenging ISBI’2018 Indian Diabetic Retinopathy Image Dataset (IDRiD). To remove the training bias, the data is balanced to ensure that each DR grade is represented with the same number of images during the training process. The proposed system shows an improved performance with respect to the related techniques using the same data, evidenced by the highest overall classification accuracy of 86.67%.","PeriodicalId":6778,"journal":{"name":"2020 37th National Radio Science Conference (NRSC)","volume":"30 1","pages":"248-254"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 37th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC49500.2020.9235098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This paper presents a deep learning framework for the classification of diabetic retinopathy (DR) grades from fundus images. The proposed framework is composed of three stages. First, the fundus image is preprocessed using intensity normalization and augmentation. Second, the pre-processed image is input to a ResNet Convolutional Neural Network (CNN) model in order to extract a compact feature vector for grading. Finally, a classification step is used to detect DR and determine its grade (e.g., mild, moderate, severe, or Proliferative Diabetic Retinopathy (PDR)). The proposed framework is trained using the challenging ISBI’2018 Indian Diabetic Retinopathy Image Dataset (IDRiD). To remove the training bias, the data is balanced to ensure that each DR grade is represented with the same number of images during the training process. The proposed system shows an improved performance with respect to the related techniques using the same data, evidenced by the highest overall classification accuracy of 86.67%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Resnet的糖尿病视网膜病变自动分级
本文提出了一个深度学习框架,用于从眼底图像中分类糖尿病视网膜病变(DR)等级。拟议的框架由三个阶段组成。首先,对眼底图像进行强度归一化和增强预处理。其次,将预处理后的图像输入到ResNet卷积神经网络(CNN)模型中,提取紧凑的特征向量进行分级。最后,分类步骤用于检测DR并确定其等级(例如,轻度、中度、重度或增殖性糖尿病视网膜病变(PDR))。该框架使用具有挑战性的ISBI ' 2018印度糖尿病视网膜病变图像数据集(IDRiD)进行训练。为了消除训练偏差,对数据进行平衡,以确保在训练过程中每个DR等级用相同数量的图像表示。与使用相同数据的相关技术相比,该系统的性能得到了提高,总体分类准确率达到了86.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Detection of Exudates and Hemorrhage in Fundus images Adaptive Femtocell Accessing Control in A 5g Heterogeneous Network Channel Matched Sparse Non-Orthogonal frequency division multiplexing (CM-SNOFDM) Operating in Underwater Acoustic Channels NRSC 2020 Tutorial A Miniaturized Dual Band Rectangular Spiral Loop Antenna for Biomedical Implants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1