Overview and comparison of modelling methods for foams

IF 3.2 4区 工程技术 Q2 CHEMISTRY, APPLIED Journal of Cellular Plastics Pub Date : 2020-12-15 DOI:10.1177/0021955X20966329
Anna Hössinger-Kalteis, M. Reiter, M. Jerabek, Z. Major
{"title":"Overview and comparison of modelling methods for foams","authors":"Anna Hössinger-Kalteis, M. Reiter, M. Jerabek, Z. Major","doi":"10.1177/0021955X20966329","DOIUrl":null,"url":null,"abstract":"Cellular materials, especially foams, are widely used in several applications because of their special mechanical, electrical and thermal properties. Their properties are determined by three factors: bulk material properties, cell topology and shape as well as relative density. The bulk material properties include the mechanical, thermal and electrical properties of the matrix. The cell topology determines if the foam exhibits stretch or bending dominated behaviour. The relative density corresponds to the foaming degree. It is defined by the cell edge length and cell wall thickness. Especially for the linear elastic properties there are many different modelling approaches. In general, these methods can be divided into two groups namely direct modelling, e.g. analytical and finite element models and constitutive modelling, e.g. models which are generated through homogenization methods. This paper presents an overview of the different modelling methods for foams. Furthermore, sensitivity studies are presented which enable the comparison of the models with regard to the estimation of the elastic properties, show the limits of those models and enable the investigation of the influence of the above mentioned factors on the elastic properties. Selected models are validated with experimental data of a low density foam regarding the Young’s modulus.","PeriodicalId":15236,"journal":{"name":"Journal of Cellular Plastics","volume":"10 1","pages":"951 - 1001"},"PeriodicalIF":3.2000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Plastics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0021955X20966329","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 14

Abstract

Cellular materials, especially foams, are widely used in several applications because of their special mechanical, electrical and thermal properties. Their properties are determined by three factors: bulk material properties, cell topology and shape as well as relative density. The bulk material properties include the mechanical, thermal and electrical properties of the matrix. The cell topology determines if the foam exhibits stretch or bending dominated behaviour. The relative density corresponds to the foaming degree. It is defined by the cell edge length and cell wall thickness. Especially for the linear elastic properties there are many different modelling approaches. In general, these methods can be divided into two groups namely direct modelling, e.g. analytical and finite element models and constitutive modelling, e.g. models which are generated through homogenization methods. This paper presents an overview of the different modelling methods for foams. Furthermore, sensitivity studies are presented which enable the comparison of the models with regard to the estimation of the elastic properties, show the limits of those models and enable the investigation of the influence of the above mentioned factors on the elastic properties. Selected models are validated with experimental data of a low density foam regarding the Young’s modulus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泡沫材料建模方法综述与比较
蜂窝材料,特别是泡沫材料,由于其特殊的机械、电学和热学性能,被广泛应用于许多领域。它们的性能由三个因素决定:大块材料特性、电池拓扑结构和形状以及相对密度。大块材料的性能包括基体的力学、热学和电学性能。细胞拓扑结构决定泡沫是否表现出拉伸或弯曲主导行为。相对密度与发泡程度相对应。它由细胞边缘长度和细胞壁厚度定义。特别是对于线弹性,有许多不同的建模方法。一般来说,这些方法可以分为两类,即直接建模,如解析和有限元模型,以及本构建模,如通过均质化方法生成的模型。本文概述了不同的泡沫建模方法。此外,还提出了敏感性研究,可以比较模型对弹性性能的估计,显示这些模型的局限性,并可以调查上述因素对弹性性能的影响。用低密度泡沫的杨氏模量实验数据对所选模型进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cellular Plastics
Journal of Cellular Plastics 工程技术-高分子科学
CiteScore
5.00
自引率
16.00%
发文量
19
审稿时长
3 months
期刊介绍: The Journal of Cellular Plastics is a fully peer reviewed international journal that publishes original research and review articles covering the latest advances in foamed plastics technology.
期刊最新文献
I-WP geometry structural assessment: A theoretical, experimental, and numerical analysis Foam density measurement using a 3D scanner Effect of temperature on the mechanical behavior of pvc foams Preparation and energy absorption of flexible polyurethane foam with hollow glass microsphere A review on the mechanical behaviour of microcellular and nanocellular polymeric foams: What is the effect of the cell size reduction?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1