Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, M. Nambiar
{"title":"Migrating a Recommendation System to Cloud Using ML Workflow","authors":"Dheeraj Chahal, Ravi Ojha, Sharod Roy Choudhury, M. Nambiar","doi":"10.1145/3375555.3384423","DOIUrl":null,"url":null,"abstract":"Inference is the production stage of machine learning workflow in which a trained model is used to infer or predict with real world data. A recommendation system improves customer experience by displaying most relevant items based on historical behavior of a customer. Machine learning models built for recommendation systems are deployed either on-premise or migrated to a cloud for inference in real time or batch. A recommendation system should be cost effective while honoring service level agreements (SLAs). In this work we discuss on-premise implementation of our recommendation system called iPrescribe. We show a methodology to migrate on-premise implementation of recommendation system to a cloud using ML workflow. We also present our study on performance of recommendation system model when deployed on different types of virtual instances.","PeriodicalId":10596,"journal":{"name":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","volume":"2017 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion of the 2018 ACM/SPEC International Conference on Performance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375555.3384423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Inference is the production stage of machine learning workflow in which a trained model is used to infer or predict with real world data. A recommendation system improves customer experience by displaying most relevant items based on historical behavior of a customer. Machine learning models built for recommendation systems are deployed either on-premise or migrated to a cloud for inference in real time or batch. A recommendation system should be cost effective while honoring service level agreements (SLAs). In this work we discuss on-premise implementation of our recommendation system called iPrescribe. We show a methodology to migrate on-premise implementation of recommendation system to a cloud using ML workflow. We also present our study on performance of recommendation system model when deployed on different types of virtual instances.