Electrostriction Effects During Defibrillation

Michelle Fritz, P. Prior, B. Roth
{"title":"Electrostriction Effects During Defibrillation","authors":"Michelle Fritz, P. Prior, B. Roth","doi":"10.33697/AJUR.2007.014","DOIUrl":null,"url":null,"abstract":"Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.","PeriodicalId":8462,"journal":{"name":"arXiv: Medical Physics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33697/AJUR.2007.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background-The electric field applied to the heart during defibrillation causes mechanical forces (electrostriction), and as a result the heart deforms. This paper analyses the physical origin of the deformation, and how significant it is. Methods-We represent the heart as an anisotropic cylinder. This simple geometry allows us to obtain analytical solutions for the potential, current density, charge, stress, and strain. Results-Charge induced on the heart surface in the presence of the electric field results in forces that deform the heart. In addition, the anisotropy of cardiac tissue creates a charge density throughout the tissue volume, leading to body forces. These two forces cause the tissue to deform in a complicated manner, with the anisotropy suppressing radial displacements in favor of tangential ones. Quantitatively, the deformation of the tissue is small, although it may be significant when using some imaging techniques that require the measurement of small displacements. Conclusions-The anisotropy of cardiac tissue produces qualitatively new mechanical behavior during a strong, defibrillation-strength electric shock.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
除颤过程中的电收缩效应
背景:除颤过程中施加于心脏的电场会产生机械力(电致伸缩),从而导致心脏变形。本文分析了变形的物理成因及其意义。方法:我们将心脏表示为各向异性圆柱体。这种简单的几何结构使我们能够得到电势、电流密度、电荷、应力和应变的解析解。结果——在电场的作用下,心脏表面产生的电荷会产生使心脏变形的力。此外,心脏组织的各向异性在整个组织体积中产生电荷密度,从而导致体力。这两种力导致组织以复杂的方式变形,各向异性抑制径向位移,有利于切向位移。定量地说,组织的变形很小,尽管在使用一些需要测量小位移的成像技术时可能很重要。结论:心脏组织的各向异性在强的除颤强度电击中产生定性的新力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of AI in Theranostics: Towards Routine Personalized Radiopharmaceutical Therapies Non-contact, in-vivo, functional, and structural ophthalmic imaging using multimodal photoacoustic remote sensing (PARS) microscopy and swept source optical coherence tomography (SS-OCT) Deep learning-based tumor segmentation on digital images of histopathology slides for microdosimetry applications Magnetic Resonance Elastography and Portal Hypertension: Influence of the Portal Venous Flow on the Liver Stiffness Navigator-Free Submillimeter Diffusion Imaging Using Multishot-Encoded Simultaneous Multi-Slice (MUSIUM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1